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Background: Random-effects meta-analysis within a hierarchical normal modeling framework is com- 

monly implemented in a wide range of evidence synthesis applications. More general problems may even 

be tackled when considering meta-regression approaches that in addition allow for the inclusion of study- 

level covariables. 

Methods: We describe the Bayesian meta-regression implementation provided in the bayesmeta R pack- 

age including the choice of priors, and we illustrate its practical use. 

Results: A wide range of example applications are given, such as binary and continuous covariables, sub- 

group analysis, indirect comparisons, and model selection. Example R code is provided. 

Conclusions: The bayesmeta package provides a flexible implementation. Due to the avoidance of MCMC 

methods, computations are fast and reproducible, facilitating quick sensitivity checks or large-scale sim- 

ulation studies. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In the course of scientific endeavour it is often necessary 

o assess the compiled evidence from several separate sources, 

.g., from independent experiments. Meta-analysis methods have 

merged as a popular class of tools to perform such evidence syn- 

heses, which are nowadays commonplace in many scientific disci- 

lines [1,2] . 

A simple, versatile and common approach to meta-analysis 

s given by the normal-normal hierarchical model (NNHM) , where 

easurement uncertainty as well as variability between measure- 

ents are implemented using normal distributions [3,4] . Inference 

ithin the NNHM framework may be tackled in different ways, and 

 Bayesian approach has proven particularly useful [5–8] . The tech- 

ical implementation is commonly facilitated using Markov chain 

onte Carlo (MCMC) methods [9] . However, the relatively simple 

NHM also lends itself to a semi-analytical solution using the di- 

ect algorithm [10] . Meta-analysis within the generic NNHM is im- 

lemented in the bayesmeta R package [11,12] . 

The simple NNHM is readily generalized to a meta-regression 

odel that allows for the consideration of additional covariables 
∗ Corresponding author. 
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d

t

(

v

ttps://doi.org/10.1016/j.cmpb.2022.107303 

169-2607/© 2022 The Authors. Published by Elsevier B.V. This is an open access article u
at the level of individual estimates, i.e. the level of the studies 

r experiments) in a meta-analysis [13–16] . This common model 

xtension may again also be analyzed via the direct approach, 

echnically by extending from one-dimensional (conditional or 

arginal) posterior distributions of a single “overall mean” or “in- 

ercept” parameter to higher-dimensional posterior distributions of 

 set of regression coefficients. This approach was recently imple- 

ented and included in the bayesmeta R package; the present 

aper gives an overview of the new functionality and showcases 

ts application in a range of different analysis scenarios. 

Meta-regression methods aim to attribute differences appar- 

nt between individual empirical estimates to available covariables, 

nd with that will reduce the between-study variance (heterogene- 

ty) — just like consideration of additional covariables in an ordi- 

ary regression will generally improve the model fit and increase 

he coefficient of determination [17] . Meta-regression analyses are 

ence often seen in the context of the exploration of (potential) 

ources of heterogeneity [18,19] , with the intention to reduce or 

liminate any unexplained variance and reduce bias [20–23] . How- 

ver, Thompson and Higgins [15] caution that associations derived 

rom meta-regression are observational in nature and that data 

redging may be an issue, while Hartung et al. [3] also point out 

he danger of overfitting due to the commonly small sample sizes 

numbers of studies). With that, the statistical power to identify co- 

ariables will commonly also tend to be low [24] . Cooper [25] in 
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his context distinguishes between the concepts of study-generated 

nd synthesis-generated evidence , and cautions that in general only 

he former may allow to infer causal relationships. Such issues 

ight to some extent be addressed by pre-specification of anal- 

ses [26] , while caution should be advised in general in order to 

void methodological problems (such as ecological fallacy ) [27] . 

While the scope of meta-regression methods is very broad, in 

ractice a large number of practical applications are concerned 

ith the investigation of subgroups of estimates, which on the 

echnical side means the consideration of binary “indicator” co- 

ariables. Such situations are often dealt with by simply analyz- 

ng groups of studies separately or jointly [28,29] . Meta-regression 

rovides an alternative approach by allowing for differences in 

ubgroup means while assuming a common heterogeneity vari- 

nce. The use of meta-regression methods here has the advantage 

hat questions regarding differences between subgroup means are 

eadily addressed, and that in particular in case of “small” sub- 

roups, pathological behaviour is avoided through the borrowing 

f information on the heterogeneity (nuisance) parameter that is 

ffectively taking place [16,21,28,30] . 

The meta-regression implementation described here facilitates 

 range of applications, including parameter estimation, predic- 

ion, shrinkage estimation, indirect comparisons, sensitivity anal- 

ses, model selection or model averaging. In the following, famil- 

arity with some basics of (Bayesian) random-effects meta-analysis 

s a bonus [12] , but is not strictly necessary. Methods will be intro-

uced with a focus on applications rather than on theoretical back- 

round. The remainder of the manuscript is structured as follows. 

n Section 2 , the random-effects meta-regression model (i.e. NNHM 

ith covariables) is introduced, including more guidance on model 

pecification details, in particular the parametrization of covariable 

ffects and prior distributions, while some technical details and 

ims are also covered. Example applications follow in Section 3 ; 

ere we provide a wide range of potential applications with code 

nippets illustrated by real data. We close with a brief discussion 

n Section 4 . 

. Methods 

.1. The data model 

Meta-regression can be facilitated through a generalization of 

he normal-normal hierarchical model (NNHM) that is commonly 

sed for random-effects meta-analysis [8,12] . The model here is ex- 

ended in order to consider linear effects of a set of study-level 

ovariables. 

Suppose that a set of estimates from k studies are to be mod- 

lled. We then have k estimates y i ∈ R (where i = 1 , . . . , k ) with

tandard errors σi ∈ R + , which are assumed known. For each of the 

 estimates, we also have a set of corresponding covariables x i ∈ R 

d 

f dimension d. Such (study-level) covariables are sometimes also 

enoted as moderators . 

It is then assumed that each estimate quantifies an underlying 

arameter θi with a normally distributed offset whose magnitude 

epends on the standard error σi : 

 i | θi , σi ∼ Normal (θi , σ
2 
i ) . (1) 

he study-specific mean ( θi ) then depends linearly on the covari- 

bles x i via a d-dimensional coefficient vector β . However, even 

or an identical set of covariables, the mean may vary from study 

o study due to additional (normally distributed) variability: 

i | x i , β, τ ∼ Normal (β1 x i 1 + . . . + βd x id , τ
2 ) . (2) 

esides measurement or sampling errors ( σi ), the between-study 

ariation is hence determined both by effects of covariables x as 
i 

2 
ell as by heterogeneity that is quantified through τ . The model 

ay also be formulated via the marginal expression 

 i | x i , β, τ, σi ∼ Normal (β1 x i 1 + . . . + βd x id , σ
2 
i + τ 2 ) . (3) 

It is often convenient to alternatively view the model in vec- 

or/matrix terminology; here we may re-write Eqs. (1) –(3) as 

y | θ, σ ∼ Normal (θ, �) 

where � = diag (σ 2 
1 , . . . , σ

2 
k ) , (4) 

θ | X, β, τ ∼ Normal (X β, τ 2 I) , and (5) 

 | X, β, τ, σ ∼ Normal (X β, �τ ) 

where �τ = � + τ 2 I , (6) 

here the data are given in terms of the vectors of estimates y ∈
 

k and standard errors σ ∈ R 

k + , and the set of covariables forms 

he regressor matrix X ∈ R 

k ×d , with rows corresponding to studies, 

nd columns corresponding to different variables. 

The unknowns in the model are the study-specific effects θi ∈ R , 

he heterogeneity τ ∈ R + , and the vector of coefficients β ∈ R 

d of 

imension d. Prior distributions need to be specified for τ and β . 

n order to include an “intercept” (overall mean) term in the re- 

ression, one may specify one of the covariables (e.g., the first 

olumn of X) as x i 1 = 1 for i = 1 , . . . , k . Also, if only an intercept

erm is considered, the model again simplifies to the “plain” meta- 

nalysis model [12] . 

.2. Prior and data specification 

.2.1. Effect and heterogeneity priors 

Prior specification works similarly to the simple random-effects 

eta-analysis model [12] ; guidances provided for sensible spec- 

fications of heterogeneity ( τ ) priors largely apply here as well 

12,31] . 

Due to the implementation used in the bayesmeta package, 

riors for the β coefficients may be specified as (proper) multivari- 

te normal or (improper) uniform only. These generic forms will 

owever be appropriate to cover a majority of common applica- 

ions. 

.2.2. Alternative model specifications 

What becomes crucial in addition then is the model specifica- 

ion , i.e., the setup of covariables x i eventually constituting the re- 

ressor matrix (or design matrix ) X . Different, and to some extent 

quivalent, conventions are conceivable in order to approach the 

ame analysis problem. This holds in particular in the context of 

inary covariables, which then imply different interpretations of 

he associated parameters (coefficients) and with that sometimes 

iffering prior settings. A sim ple exam ple involving binary covari- 

bles is illustrated in Table 1 . 

Suppose three groups of studies (labelled A, B and C) are 

iven, which may be identified using indicator variables as re- 

ressors in the design matrix X . Two possible setups are shown 

ere; on the left-hand side, the first study’s mean is modeled as 

see Eq. (3) ) β1 x 11 + β2 x 12 + β3 x 13 = β1 , whereas the third study’s

ean is β1 x 31 + β2 x 32 + β3 x 33 = β2 . The three β parameters hence 

irectly correspond to the three group means. On the right-hand 

ide, the first study is modelled in the same way, however, the 

hird study’s mean is β1 x 31 + β2 x 32 + β3 x 33 = β1 + β2 . The second

oefficient ( β2 ) hence corresponds to the difference (or contrast ) be- 

ween groups A and B, while group A serves as a “reference”. Ei- 

her way of formulating models may have its merits, and switching 

rom one to another corresponds to a transformation between dif- 

ering parameter spaces [ 32 , Sec. 1.8]. Prior settings for the regres- 

ion coefficients may have differing implications in different model 
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Table 1 

Illustration of different popular binary regressor matrix ( X) codings for an 

example setting involving k = 7 studies in d = 3 subgroups. On the left- 

hand side, the three regression parameters β1 to β3 simply correspond to 

the three groups’ means. On the right-hand side, β� 
1 again corresponds to 

the mean in group A, which also serves as a “reference”. Parameters β� 
2 and 

β� 
3 correspond to the differences (“contrasts”) between the means within 

groups A and B and groups A and C, respectively. 

“Group mean” “Intercept/offset”

parametrisation parametrisation 

i Subgroup x i 1 x i 2 x i 3 x � 
i 1 

x � 
i 2 

x � 
i 3 

1 A 1 0 0 1 0 0 

2 A 1 0 0 1 0 0 

3 B 0 1 0 1 1 0 

4 B 0 1 0 1 1 0 

5 B 0 1 0 1 1 0 

6 C 0 0 1 1 0 1 

7 C 0 0 1 1 0 1 
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etups, and prior settings in one parametrisation may be translated 

o another by considering the transformation step. 

More specifically, in the example from Table 1 , the right-hand 

ide (“intercept / offset”) parametrization results from the left- 

and side (“group means”) via a linear transformation β → β� , 

here 

� = 

( 

β� 
1 

β� 
2 

β� 
3 

) 

= 

( 

β1 

β2 − β1 

β3 − β1 

) 

= 

( 

1 0 0 

−1 1 0 

−1 0 1 

) ( 

β1 

β2 

β3 

) 

= Aβ . (7) 

mplications of prior assumptions in one parametrization may be 

erived by considering the transformation’s effect on the trans- 

ormed random variable [ 32 , Sec. 1.8]. In this case, if a normal prior

ith mean μ and variance � was assumed for β , then this implies 

 normal prior with mean Aμ and variance A �A 

′ for the trans- 

ormed parameter set β� . 

Transformations between alternative parametrisations, which 

ay also be the result of transformations of the original data , are 

ften useful to simplify interpretation, or in order to avoid numer- 

cal problems. These may also arise in the context of continuous 

ovariables, for example, when re-expressing fractions as percent- 

ges, or when “centering” covariables by subtracting their mean 

evels. 

.3. Inference 

.3.1. Technical implementation 

In the bayesmeta R package, the direct algorithm is utilized 

o facilitate meta-analysis within the NNHM framework via the 

ayesmeta() function [10] . In contrast to the “simple” meta- 

nalysis setup considered previously by Röver [12] , instead of a 

ingle “overall mean” parameter μ, the meta- regression model now 

nvolves a d-dimensional coefficient vector β , which means that 

ome analytic expressions need to be generalized to their multi- 

ariate analogues; the basic algorithm for deriving the posterior 

istributions however may still be applied analogously. 

The meta-regression functionality is provided by the new 

mr() function; its main input arguments are: 

y : a vector of estimates ( y i ) of length k 

sigma : a vector of associated standard errors ( σi ) of length k 

X : a regressor matrix ( X) with k rows and d columns 

tau.prior : a prior density function ( f (τ ) ) for the hetero- 

geneity τ ( or a character string denoting a specific form) 

beta.prior.mean : a vector of prior means of dimension d

beta.prior.sd : a vector of prior standard deviations of di- 

mension d
3 
o a large extent, the behaviour is similar to the bayesmeta() 
unction, especially with respect to the y , sigma and tau.prior 
rguments [12] . The major differences to the bayesmeta() func- 

ion are that one may specify an additional “X ” argument giving 

he regressor matrix ( X), and that the posterior, instead of referring 

o only a single effect μ, now involves a d-dimensional parameter 

ector β . By default, if the tau.prior , beta.prior.mean and 

eta.prior.sd arguments are left unspecified, (improper) uni- 

orm priors are assumed for τ and β . If an X argument is not sup- 

lied, a single-column matrix of ones is used, so that the analysis 

implifies to fitting a single “intercept” parameter. 

Inference is facilitated through a semi-analystical approach, 

hich is based on noting that the problem essentially involves two 

arameters, namely, the heterogeneity τ and the coefficient vec- 

or β . For any fixed heterogeneity value, the conditional posterior 

istribution p(β| τ ) results analytically as a (multivariate) normal 

istribution. The heterogeneity’s marginal posterior density func- 

ion p(τ ) on the other hand may also be expressed in analytical 

orm. Noting that the joint posterior density may be written as 

 product, i.e., p(β, τ ) = p(β| τ ) p(τ ) , then implies that the coef-

cients’ marginal posterior results as a (continuous, normal) mix- 

ure distribution, i.e., p(β) = 

∫ 
p(β, τ )d τ = 

∫ 
p(β| τ ) p(τ )d τ . The 

irect algorithm utilized here for posterior computations then ap- 

roximates the continuous mixture distribution by a discrete mix- 

ure using a finite number of components; a strategic setup of the 

et of support points then allows to control the computational ac- 

uracy [10] . 

.3.2. Aims 

Inference within a meta-regression application may be aimed 

t a range of different aspects, e.g., joint or marginal distribu- 

ions of regression coefficients ( βi ), linear combinations of coeffi- 

ients ( x ′ β), investigation of heterogeneity ( τ ), shrinkage estima- 

ion ( θi ), or prediction ( θk +1 | x ). Posterior distributions of all these 

gures are available from the bmr() function’s output. It is possi- 

le to access these directly from the object returned by the bmr() 
unction, however, many relevant figures are included in the de- 

ault output, and it is often convenient to request certain figures to 

e included e.g. in a summary printout or a forest plot. Ways to 

etrieve such figures are illustrated alongside the example applica- 

ions below. 

. Results 

In this section a number of applications are presented to illus- 

rate the versatile use of meta-regression with bayesmeta . 

.1. Binary covariable 

.1.1. Inferring two means 

Crins et al. [33] reported on a meta-analysis of studies in- 

estigating the use of interleukin-2 receptor antagonists (IL-2RA) 

or immunosuppression in pediatric liver transplant recipients. Of 

rimary interest was the occurrence of acute rejection (AR) re- 

ctions, a common adverse event that is supposed to be pre- 

ented by the medication. Two different types of IL-2RAs were 

sed, namely, basiliximab and daclizumab . The rates of AR events 

n the studies’ treatment and control groups are summarized in 

erms of odds ratios (see also [12] ); the relevant data are shown in

able 2 . 

We will perform a meta-analysis aiming to investigate the mean 

ffects for the two types of treatment; to that end, we specify the 

egressor matrix X reflecting the grouping of the data: 
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Table 2 

Data from the immunosuppression example. Each row here 

summarizes a 2 ×2 contingency table in terms of a derived 

log-OR ( y i ) and its associated standard error ( σi ). Two differ- 

ent types of IL-2RA treatments were investigated ( basiliximab 

and daclizumab ). 

Study log-OR 

i Reference IL-2RA y i σi 

1 Heffron (2003) daclizumab −2 . 31 0.60 

2 Gibelli (2004) basiliximab −0 . 46 0.56 

3 Schuller (2005) daclizumab −2 . 30 0.88 

4 Ganschow (2005) basiliximab −1 . 76 0.46 

5 Spada (2006) basiliximab −1 . 26 0.64 

6 Gras (2008) basiliximab −2 . 42 1.53 
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0 1 

1 0 

0 1 
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1 0 

1 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (8) 

n analogy to the coding illustrated in Table 1 , rows correspond to 

he six observations, and columns correspond to the two groups; 

he placement of zeroes and ones reflects the studies’ associations 

o one of the two medication types. The investigation of differ- 

nces in treatment effects here technically implies the consider- 

tion of a possible interaction between treatment and IL-2RA type. 

or the heterogeneity parameter ( τ ), a half-normal prior distribu- 

ion is appropriate in the context of a log-OR endpoint [12,31,34] . 

or the regression coefficients ( β1 and β2 ), an (improper) uniform 

rior is used. First, the package and the example data set need to 

e loaded, and the effect measures (log-ORs) may be derived using 

he metafor package’s escalc() function: 

hen we may specify the regressor matrix X: 

he bmr() function then works very similarly to the 

ayesmeta() function [12] ; estimates and standard errors 

ay be specified via the “y ” and “sigma ” arguments, or the data 

ay simply be supplied in terms of the object returned from the 

scalc() function. The heterogeneity prior is specified in terms 

f its probability density function, and in addition the regressor 

atrix needs to be provided via the “X ” argument. We may hence 

pecify 
p

4 
r simply 

e may then have a closer look at the analysis output: 

he function’s output again is very similar to the bayesmeta() 
unction’s output (see also [12] ); at the top we see details of the 

odel specification, the number and labels for the included stud- 

es, the number of regression coefficients and the prior specifica- 

ion. The variable names (here: “basiliximab” and “daclizumab”) 

ere taken from the column names of the regressor matrix. Then 

aximum-a-posteriori (MAP) estimates are shown, as well as sum- 

ary statistics for the three parameters’ marginal posterior dis- 

ributions. The median and 95% CIs for the basiliximab and da- 

lizumab parameters ( β1 and β2 ) are given by −1 . 38 [ −2 . 04 ,

0 . 53 ] and −2 . 31 [ −3 . 46 , −1 . 16 ], respectively. The treatment

ence appears to be effective in reducing AR events in both study 

roups. 

The (here: three) parameters’ marginal or joint posterior dis- 

ributions may also be inspected using the plot() or pairs() 
unctions. The posterior distributions may also be accessed e.g. via 

he functions contained in the returned object’s elements; for ex- 

mple, the bmr01$qposterior() function allows to compute 

osterior quantiles. A call of 

eturns the heterogeneity posterior’s 99% quantile. Similarly, using 

he 99% quantile of the β1 parameter may be determined. The 

which.beta ” argument here is used to specify the β pa- 

ameter’s index. Analogously, the “... $dposterior() ”, 

... $pposterior() ”, “... $rposterior() ” and “... 
post.interval() ” functions may be used to determine pos- 

erior density, cumulative distribution function, random numbers 

r credible intervals (the naming of functions here follows the 

ommon R conventions, as e.g. known from the dnorm() or 

norm() functions). 
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Fig. 1. A forest plot illustrating the meta-regression results based on the transplan- 

tation data from Table 2 . The two study groups are coded in terms of two binary 

indicator variables labelled “basiliximab” and “daclizumab”. 

Fig. 2. Two forest plots similar to the one shown in Fig. 1 and illustrating analogous 

meta-regression results based on different parametrisations of the regressor ma- 

trix X (top: “group mean” parametrization, bottom: “intercept/slope” parametriza- 

tion; note the differing setups in the 2nd and 3rd “regressor” columns). 

o

e

t

p
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e

W

t

t

3

n

c

X

Estimates of the θi parameters ( i = 1 , . . . , k ), the shrinkage es-

imates , may also be derived. Some summary statistics are pro- 

ided in the “... $theta ” element. Access to the complete 

istributions (probability density, cumulative distribution func- 

ion, quantile function, random number generation and cred- 

ble intervals) is provided via the “... $dshrink() ”, “... 
pshrink() ”, “... $qshrink() ”, “... $rshrink() ” and 

... $shrink.interval() ” functions. 

To illustrate the results in a forest plot, one may call 

he resulting plot is shown in Fig. 1 . The forest plot’s first six lines

how the original data (estimates y i and 95% CIs based on stan- 

ard errors σi and the normal model), and the shrinkage estimates 

 θi ). The table also includes the regressor matrix X in the columns 

hat are labelled as “basiliximab” and “daclizumab”, as in the orig- 

nal specification of the “X ” argument. The two lines at the bottom 

hen show the estimates of the two associated regression param- 

ters β1 and β2 . The heterogeneity ( τ ) distribution finally is also 

ummarized at the bottom left. 

Note that while in a simple meta-analysis shrinkage estimates 

re “shrunk” towards the common overall mean, in a meta- 

egression shrinkage acts in the direction of the corresponding pre- 

icted value; in this case this means that individual studies’ shrink- 

ge estimates move towards the corresponding (basiliximab or da- 

lizumab) group means. 

.1.2. Inferring means, contrasts, or predictions 

Quite commonly, it is also of interest to evaluate the pos- 

erior distribution of linear combinations of the regression co- 

fficients ( βi ), or of predictions corresponding to such com- 

inations. For such purposes, the “... $dpredict() ”, “... 
ppredict() ”, “... $qpredict() ”, “... $rpredict() ”
nd “... $pred.interval() ” functions are available. 

In the present example, it may be of interest to infer the dif- 

erence of the two group means, β2 − β1 . If its posterior includes 

ero, then the two medications may be equally effective; if zero is 

utside the plausible range, this indicates differing efficacies. The 

bove difference is a linear combination of the two coefficients, i.e., 

 sum of β2 − β1 = −1 ×β1 + 1 ×β2 with coefficients −1 and +1 

or β1 and β2 , respectively. We can request the linear combina- 

ion’s distribution by specifying the two coefficients, e.g., in order 

o determine the median or a 95% CI: 

uch coefficients were in fact already quoted along with the sum- 

ary estimates in the forest plot in Fig. 1 , although only involving 

eroes and ones as coefficients. Analogously, additional linear com- 

inations can be specified for the plot; e.g., to include the group 

ifference in the figure, we may specify 

he resulting plot is shown in Fig. 2 (top). It should be noted that

he comparison of basiliximab vs. daclizumab constitutes an indi- 

ect comparison here, as it contrasts two treatments that have not 

een “directly” compared in a head-to-head comparison in any of 

he six trials considered [35] . For more on indirect comparisons, 

ee also Section 3.2 below. 
5 
Besides the mean effects, predictions are often of interest, e.g., in 

rder to assess plausible ranges for a “future” study’s mean param- 

ter θk +1 (which, in addition to the β coefficients, also depends on 

he estimated amount of heterogeneity τ ). In the present exam- 

le, we might be interested in predicting the mean in a new study 

nvestigating basiliximab; we can check out some quantiles of the 

ffect’s distribution via 

e again need to specify the coefficients via the “x ” argument, and 

he “mean ” argument (which by default is TRUE ) needs to be set 

o FALSE explicitly. 

.1.3. Alternative regressor matrix setups 

The specification of the regressor matrix X (see Eq. (8) above) is 

ot unique; a number of different approaches are conceivable and 

ommon, for example, one might as well specify 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 

1 0 

1 1 

1 0 

1 0 

1 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

or X = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 +0 . 5 

1 −0 . 5 

1 +0 . 5 

1 −0 . 5 

1 −0 . 5 

1 −0 . 5 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(9) 



C. Röver and T. Friede Computer Methods and Programs in Biomedicine 229 (2023) 107303 

t

f

t

m
r

w  

s

t

s

a

T

w

t

t

p

l

m

s

f

t

c

o

t

X

T

g

s

β

N

i

b

a

μ

T

p

p

a

μ

�

T

o

b

u

m

t  

a

W

g

s
m

W

r

o yield analogous results. Different setups will then imply dif- 

erent interpretations for the associated β parameters. Within R , 

he most common parametrization is also returned by the 

odel.matrix() function (from the stats package); if we 

un 

e can see that we in fact yield the first of the above two ver-

ions, an “intercept/slope” parametrization, which would often be 

he default for many regression models within R . We may run the 

ame analysis using this alternative regressor matrix: 

nd generate a corresponding forest plot: 

he resulting plot is shown in Fig. 2 (bottom). We can see that 

e get essentially identical results here, and that we only need 

o specify the linear combinations differently in order to re- 

rieve group means or group differences based on the differing 

arametrizations. 

While in the above example the results are essentially equiva- 

ent (see also Section 2.2 ), either way of formulating the problem 

ay have its advantages. Interpretation of parameters and prior 

pecification may be easier or more obvious in one or another 

ormulation. In case informative priors for the regression parame- 

ers β were to be used in the above example, this may either imply 

onsiderations of constraints on the two individual group means, 

r on their difference. 

For example, consider the two alternative parametrizations in 

erms of 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 +0 . 5 

1 −0 . 5 

1 +0 . 5 

1 −0 . 5 

1 −0 . 5 

1 −0 . 5 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

and X 

� = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 

1 0 

0 1 

1 0 

1 0 

1 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (10) 

he implied parameters may be thought of as “overall mean / 

roup difference” or “two group mean” parameters. The two as- 

ociated parameter vectors β and β� are related to one another as 

� = 

(
β� 

1 

β� 
2 

)
= 

(
β1 − 0 . 5 β2 

β1 + 0 . 5 β2 

)
= Aβ , 

with A = 

(
1 −0 . 5 

1 +0 . 5 

)
. (11) 

ow suppose that in the former parametrization ( β) we want to 

mplement a vague prior for the overall mean, while the difference 

etween groups is expected to be rather small; for β we hence 
6

ssume a normal prior with mean and covariance 

= 

(
0 

0 

)
and � = 

(
100 0 

0 1 

)
. (12) 

he prior specification in the “overall mean/group difference”

arametrization has its counterpart in the “two group mean”

arametrization; for the “transformed” parameter β� , this implies 

 prior distribution with mean and covariance 

� = Aμ = 

(
0 

0 

)
and (13) 

� = A �A 

′ = 

(
100 . 25 99 . 75 

99 . 75 100 . 25 

)
. (14) 

he high correlation reflects the assumption implemented in the 

riginal parametrization that there is a constraint on the difference 

etween the means while their common average level has greater 

ncertainty. 

Performing the analysis using different parametrizations and 

atching proper, informative priors should then again yield iden- 

ical sets of estimates as in the previous example ( Fig. 2 ). The two

nalyses may be performed via 

e may then check the corresponding estimates (of the two 

roup means, the overall mean and the group difference) via the 

ummary() function, which allows to specify an “X.mean ” argu- 

ent, similarly to the forestplot() function; for example: 

e may first double check the differing setups of the underlying 

egressor matrices: 
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nd then check the resulting estimates: 

nd indeed the corresponding estimates are identical under both 

odel variations (and different from those shown in Fig. 2 , which 

ere based on uniform priors). 

.1.4. Connection to meta-analysis without covariables 

Meta-regression is a generalization of a “simple” meta-analysis, 

nd the simple meta-analysis again constitutes the special case of 

 regression that does not consider additional covariables (besides 

n overall “intercept” term). We may also use the bmr() function 

ithout covariables by simply omitting the “X ” argument: 

e can check the regressor matrix used internally (which here 

ay be accessed as “bmr05$X ”) to see that indeed this is by de- 

ault a matrix consisting of a single column of ones, so that a single

intercept” parameter β1 is fitted. 

We may then compare results against those from the 

ayesmeta() function; comparing the estimates for the overall 

ean, we get 

ifferences between the two results are due to differences in 

umerical accuracy; if we check the number of support points 

sed internally for the approximation of the posterior (via 

str(bmr05$support) ” or “str(bma$support) ”), we can 

ee that bmr() uses 9 support points, while bayesmeta() yields 

 grid of 17 points. The slight discrepancy arises since within the 

ayesmeta() function, the grid setup is determined based on 

he marginal distribution of the overall mean ( μ) as well as the 

hrinkage estimates ( θi ) [12] , while in bmr() only the regres- 

ion coefficients’ (multivariate) distribution is considered. If de- 

ired, accuracy may always be increased by adjusting the “delta ”
r “epsilon ” parameters [10] . 

In the two-group comparison discussed above (see e.g. Fig. 2 ), 

he two group means (basiliximab and daclizumab) are estimated 

independently” in some sense, i.e., the estimates from one group 

f studies only help estimating the other group’s mean insofar as 

hey provide information on the heterogeneity, but not on the ac- 

ual location . The difference to performing two completely separate 

nalyses of both group means is the assumption of a common het- 

rogeneity parameter for both groups. This provides another con- 

ection to the “simple” meta-analysis model (without additional 

ovariables): the two group mean estimates may also be recov- 

red by performing two separate meta-analyses and propagating 
7

nly the heterogeneity information. Consider the estimate of the 

aclizumab group, which was given by 

he same estimate may be derived by first performing the anal- 

sis for the basiliximab group only, and then using the resulting 

eterogeneity posterior as the prior for the subsequent daclizumab 

nalysis: 

ne can see that the results are essentially identical, with slight 

iscrepancies that may be attributed to numerical differences. 

.2. Indirect comparisons in a treatment network 

It became already evident in the previous example 

 Section 3.1.2 ) that fitting individual coefficients for certain 

airwise comparisons, along with the option to infer linear com- 

inations of coefficients, allows to estimate certain indirect com- 

arisons [35] . In fact, applicability of the meta-regression model 

o some degree extends into the domain of network meta-analysis 

NMA) [ 30 , Sec. 11.4.2]. However, the scope here is somewhat 

imited, insofar as the model is contrast-based , only two-armed 

rials may be considered, and a single common heterogeneity 

arameter is assumed [36–38] . 

For illustration, we will consider the example data set due to 

ucher et al. [39] , which includes studies providing evidence for 

oth the direct as well as the indirect comparison of two treat- 

ents. Bucher et al. [39] considered the example of the com- 

arison of sulphametoxazole-trimethoprim (TMP-SMX) versus dap- 

one/pyrimethamine (D/P) for the prophylaxis of Pneumocystis carinii 

neumonia (Pcp) in HIV patients. Eight studies had undertaken a 

ead-to-head comparison of both medications, but an additional 

4 studies were available investigating one of the medications with 

erosolized pentamidine (AP) as a comparator. Nine studies com- 

ared TMP-SMX vs. AP, and five studies compared D/P vs. AP. To- 

ether these provide indirect evidence on the effect of TMP-SMX 

ompared to D/P. The resulting triangular network of pairwise 

omparisons is illustrated in Fig. 3 . 

We may load the data and compute effect sizes (log-ORs) for all 

2 studies. 

e may then set up the regressor matrix to estimate the two rel- 

vant (non-redundant) treatment effects. Two coefficients ( β and 
1 
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Fig. 3. Illustration of the triangular network of comparisons within the Bucher et al. 

[39] example data set. 8 studies provide a direct head-to-head comparison of TMP- 

SMX vs. D/P (indicated by the blue edge); the remaining 14 studies (shown in red) 

provide indirect evidence on the effect via the comparison of either TMP-SMX ver- 

sus AP (9 studies), or D/P versus AP (5 studies). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this ar- 

ticle.) 

Fig. 4. Forest plot for the network-MA data set [39] . The first 8 studies did a direct 

head-to-head comparison of TMP-SMX vs. D/P; the remaining studies provide indi- 

rect evidence on the effect via the comparison with AP. At the bottom, the estimates 

for all three pairwise comparisons are shown. 

β
S

D

t

A

s

R
T

t

s

i  

w

r

a

c

t

a

i

I

D

a

−  

Fig. 5. Posterior distributions for the β coefficient corresponding to the log-OR in 

the comparison of TMP-SMX vs. D/P , either considering only the studies providing 

direct or indirect evidence, or including all studies. Besides posterior densities, pos- 

terior medians and 95% CIs are indicated. 
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2 ) are estimated; the first corresponds to the comparison of TMP- 

MX against D/P, the second is for the comparison of AP again 

/P, and the last remaining pairwise comparison (TMP-SMX vs. AP) 

hen results as the difference of the former two. 

gain, there are alternative (equivalent) ways to set up the regres- 

or matrix [37] . The actual analysis then is performed via a call of 

 > bmr06 < - bmr (es, X = X) 
he “tau.prior ” argument is left unspecified, which means that 

he default of an (improper) uniform prior is used for τ , which 

hould be appropriate given the reasonably large number of stud- 

es included here ( k = 22 ) [31] . Figure 4 illustrates the data along

ith the regressor matrix and the estimated coefficients in a cor- 

esponding forest plot. 

In order to more closely investigate and contrast the “direct”

nd “indirect” contributions to specific estimates, we may have a 

loser look at the estimates resulting from considering subsets of 

he data. In addition to the analysis described above, we may run 

nalyses based only on the subsets of studies providing direct or 

ndirect evidence (studies 1–8 or studies 9–22): 

n the overall analysis, the log-OR for the effect of TMP-SMX vs. 

/P is estimated at −0 . 75 with 95% CI [ −1 . 32 , −0 . 25 ]; the “direct”

nd “indirect” estimates are roughly similar and overlapping at 

0 . 83 [ −1 . 91 , 0.06] and −0 . 96 [ −1 . 73 , −0 . 21 ]. We may also inspect
8 
he corresponding posterior densities, which again are accesssible 

ia the returned “...$dposterior() ” functions. In Fig. 5 , the 

hree posteriors are contrasted side-by-side. All three estimates are 

onsistent, and when combining direct and indirect evidence, the 

ain in precision becomes apparent. 

.3. Continuous covariable 

Nicholas et al. [40] performed a systematic review and meta- 

nalysis in order to examine how the characteristics of placebo 

roups of randomized controlled trials in multiple scelerosis may 

ave evolved over time. A number of features were investigated, 

mong these was the proportion of patients experiencing disabil- 

ty progression within 24 months. 28 studies with available infor- 

ation on disability progression were found, spanning the period 

rom the year 1990 until 2018. A time trend in the progression 

ates would mean a tendency towards more severe or more benign 

ases being investigated over the years, and may have implications 

or the comparability of results from older or more recent studies, 

r also for the design of future studies. We can load the example 

ata, and from the studies’ placebo group sizes and the observed 

ercentages of progressing patients, we can compute estimates of 

he logarithmic odds of disease progression using the escalc() 
unction: 
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Fig. 6. A forest plot illustrating the meta-regression results based on the multiple 

sclerosis data. The time trend is parameterized in terms of an intercept and a year 

variable that is centered at the year 20 0 0. In addition to the “plain” intercept and 

(annual) slope, several linear combinations as well as a prediction for the year 2019 

are also shown. 

Fig. 7. A plot illustrating the multiple sclerosis data along with credible intervals 

for the mean as well as prediction intervals. 

i

(

he “yi ” and “vi ” columns here give the log-odds and their 

squared) standard errors. The (continuous) covariable of interest 

s given in the “year ” column. We may then specify the regressor 

atrix: 

ote that here we are using to a simple “intercept/slope” model, 

nd that the “year” variable is re-coded so that the data are cen- 

ered at the year 20 0 0 (and the intercept parameter hence cor- 

esponds to the log-odds in 20 0 0). We may then perform the 

nalysis: 

 prior for the heterogeneity ( τ ) again is not specified, implying 

hat he default of an (improper) uniform prior is used [31] . 

We may inspect the regression results based on the returned 

arameter estimates, but it may in fact be more illustrative to 

resent these in a forest plot. Besides the two “plain” parameter 

stimates (intercept β1 and slope β2 ) we may check estimates of 

ertain linear combinations corresponding to the mean at certain 

ime points, or also to predicted values. A call of 

ill generate a forest plot including the intercept and slope (an- 

ual change), the change per decade, the mean log-odds at several 

ime points, as well as a prediction for the year 2019; the resulting 

lot is shown in Fig. 6 . The annual change is estimated to be nega-

ive, implying a reduction in the log-odds by 0.033 per year, or by 

.33 per decade. For the odds this means a reduction by 3.2% per 

ear, or by 28% per decade. 

Besides the forest plot, it is often useful to illustrate the data 

long with the model estimates graphically. To that end, we can 

ompute predictions and credible intervals and combine these in a 

ingle plot: 
g

9 
The resulting trend plot is shown in Fig. 7 . All estimates (stud- 

es) along with their error bars are shown, and the estimated mean 

along with credible and prediction intervals) is computed for a 

rid of values spanning the range from 1989 to 2019. 
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Fig. 8. A “bubble plot” illustrating the data along with credible intervals for the 

mean effect as functions of the dose in “early” and “late” study groups. The point 

sizes are inversely proportional to the standard errors. 
Nicholas et al. [40] pointed out the good agreement with a 

ubsequently published study by Kappos et al. [41] in 2018, who 

depending on the exact definition used) reported between 23% 

nd 30% progressing patients, corresponding to log-odds of −1 . 18 

r −0 . 83 , respectively. 

The predicted log-odds were -0.87 [-2.17, 0.42] for a “future”

tudy in the year 2019 (see Fig. 6 ), corresponding to probabilities 

f 0.29 [0.10, 0.60]. Such a prediction could be useful for study de- 

ign [42–44] or sample size determination [45] ; it might also be 

tilized to supplement a study’s sparse placebo data in terms of a 

eta-analytic-predictive (MAP) prior [46] . 

.4. Several covariables 

Roberge et al. [47] performed a systematic literature review in 

rder to summarize the evidence on effects of aspirin administered 

uring pregnancy. Earlier research had already suggested that pro- 

hylactic administration of low-dose aspirin may reduce the preva- 

ence of fetal growth restriction (FGR) , which is a common cause 

f perinatal morbidity and mortality [48] . While the exact mech- 

nism by which aspirin works here is still unclear, it had become 

pparent that it is most effective when initiated early on, before 

6 weeks of gestational age. 

A total of 35 studies were included in the eventual analysis; 

n 17 studies, therapy was initiated early ( ≤16 weeks gestational 

ge), and in 18 studies, onset was late ( > 16 weeks). Doses differed

etween studies and ranged from 50 up to 150 mg daily. For each 

tudy, we have numbers of cases and FGR events in treatment and 

ontrol groups. 

We may load the example data and derive the log-ORs for all 

tudies providing data on FGR events: 

t first we can check whether the aspirin dose appears to affect 

he chances of FGR; we can use the model.matrix() function 

o set up a corresponding regressor matrix and perform a simple 

nalysis specifying an intercept and a linear effect for the dose. 

gain, due to the large number of studies included, we may utilize 

 non-informative (improper) uniform prior for the heterogeneity. 

o far, this does not convincingly indicate an effect; while the 

dose” effect is estimated to be negative, implying a reduction in 

GR events with increasing dose, the 95% CI includes both negative 

s well as positive values. 
10 
Considering the earlier suggestion of the relevance of the time- 

oint of therapy initiation, we may then check whether the effect 

ight differ between studies implementing an “early” or “late” on- 

et. Such a model may be defined in different ways; here we will 

onsider a setup including individual intercepts and slopes in both 

roups of studies: 

e can see that the first studies within the data set all belong to 

he “early” group; in the second group, the regressor matrix entries 

orresponding to the “late” effects then are non-zero instead. We 

ay then run the analysis based on the extended model: 

rom the analysis results, we now see a somewhat different pic- 

ure; first of all, the heterogeneity ( τ ) is reduced, from a median 

f 0.28 down to 0.12. The “late” slope parameter still is small and 

entered near zero, while the “early” slope parameter along with 

ts 95% CI is on the negative side. 
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We may illustrate data and regression lines jointly in a “bubble 

lot”; the estimated ORs as functions of the regressors may again 

e extracted from the bmr() function’s output: 

he resulting trend plot is shown in Fig. 8 . “Larger” studies (those 

ith smaller standard errors) are denoted by larger symbols. 

Again, a range of alternative model or prior specifications 

ay be sensible here; e.g., different parametrizations (common 

ntercept or slope parameters, individual heterogeneity parame- 

ers, differing prior specifications, a zero intercept,...), which may 

lso suggest the use of a model selection approach (see following 

ection 3.5 ). In addition, it may also be interesting to investigate 

he sensitivity of results to individual data points (studies). 

.5. Model selection 

.5.1. The example setup 

Cinar et al. [49] discussed a meta-analysis problem involving a 

otal of four potential covariables. Their example data set included 

0 studies investigating biomass production of maize plants under 

ifferent conditions; of interest were the effects of inoculation us- 

ng symbiotic mycorrhizal fungi. Four dichotomous aspects varied 

etween the studies, namely the type of fungus (FUN, funneliformis 

r rhizophagus ), the use of phosphorus fertilizer (FP, yes/no), use of 

itrogen fertilizer (FN, yes/no), and sterilization of the soil (STER, 

es/no). The endpoint was expressed in terms of a logarithmic re- 

ponse ratio [50] , and the problem was first of all to determine 

hich of the variables affected the yield, making this a variable se- 

ection or model selection problem. 

In the present case, combinations of the four (binary) variables 

llow to specify 16 different models , ranging from the model with- 

ut covariables (besides an overall intercept) to the model with 

ll four included. In a Bayesian context, after specification of prior 

robabilities (for all models themselves, as well as for parame- 

ers within models), one may then derive posterior probabilities 
11 
or each model, or one may compare and rank models based on 

heir associated Bayes factors [32,51–53] . The uncertainty involved 

n the model selection may also be accounted for (or in fact, 

he selection of a single model is avoided) by using a model av- 

raging approach [54–58] . Another approach may be to consider 

he median probability model based on all variables’ marginal in- 

lusion probabilities [59,60] . Either way, computations hinge on 

he determination of marginal likelihoods , which first of all is of- 

en computationally challenging, and secondly, requires the spec- 

fication of proper priors for all parameters within the 16 mod- 

ls. Unlike in many parameter estimation problems, the exact de- 

ails of (non-informative or weakly informative) prior specifications 

re crucial and may affect results in sometimes unintuitive ways, 

s exemplified in Lindley’s paradox [32,61] , so that particular cau- 

ion is advised here. In some cases, it may be worth consider- 

ng whether a model selection approach is in fact the method of 

hoice [62] . 

.5.2. Model specification 

We assume all of the 16 possible models to be a priori equally 

ikely; within each model we then assign a vague prior for the in- 

ercept (normal with mean zero and standard deviation 10), and 

eakly informative priors for the binary covariables’ effects (nor- 

al with mean zero and standard deviation 2.82). The effect prior 

onfines the likely effect magnitudes on their logarithmic scale so 

hat back on the (exponentiated) scale of response ratios these 

oughly correspond to values within factors of 250 and 

1 
250 [63] . 

or the heterogeneity parameter ( τ ), we assume a weakly infor- 

ative half-normal distribution with scale 0.5 [31] . 

Note that equal prior probabilities for all models imply that all 

ariables a-priori have 50% inclusion probability, and that the prior 

xpected number of parameters is N 
2 (where N is the total number 

f variables). Alternatively, different specifications are also conceiv- 

ble; for example, assigning a probability π for each variable to 

e included implies a probability πn (1 − π) (N−n ) for each single 

odel (where n is the number of variables included) and it implies 

 priori a binomially distributed total number of included parame- 

ers (with expectation πN). 

.5.3. Implementation 

The example data are available in Cinar et al. ’s online supple- 

ent [64] . We may download the data, read them into R , and then

ystematically apply the 16 possible meta-regression models. Com- 

utations may take a few minutes. 
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Table 4 

Parameter estimates for the most probable model in- 

cluding the FP and FN variables (phosphorus and ni- 

trogen fertilizers), which receives a posterior proba- 

bility of 0.63. 

Parameter Median 95% CI 

heterogeneity ( τ ) 0.510 [0.339, 0.690] 

intercept ( β1 ) 0.227 [-0.097, 0.652] 

FP ( β2 ) -1.006 [-1.416, -0.582] 

FN ( β3 ) 0.894 [0.429, 1.346] 
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he 16 regression outputs are now stored in the “bmrlist ” ob- 

ect. The marginal likelihood for a bmr() output is stored in the 

...$marginal.likelihood ” element (presuming that proper 

riors have been used for the analysis). We may now assemble 

hese numbers, and combine them with the models’ prior prob- 

bilities to derive the posterior probabilities. 

Table 3 illustrates the 16 models along with their posterior 

robabilities. The a-posteriori most probable model at the top of 

he list is the one including (besides an intercept) the FP and FN 

ariables, corresponding to influential effects for phosphorus and 

itrogen fertilizers. 
Table 3 

The 16 models and their probabilities (in descending order). A dot 

( •) indicates that a variable is included in a model, an open circle 

( ◦) means that it is not included. The very last line shows the four 

variables’ marginal inclusion probabilities. 

Included variables 

Model FUN FP FN STER Probability 

1 ◦ • • ◦ 0.6293 

2 ◦ • • • 0.1076 

3 • • • ◦ 0.0907 

4 • • ◦ ◦ 0.0645 

5 ◦ • ◦ • 0.0380 

6 • • ◦ • 0.0304 

7 • • • • 0.0148 

8 ◦ • ◦ ◦ 0.0106 

9 • ◦ ◦ ◦ 0.0077 

10 • ◦ ◦ • 0.0019 

11 ◦ ◦ ◦ • 0.0014 

12 ◦ ◦ ◦ ◦ 0.0011 

13 • ◦ • ◦ 0.0009 

14 ◦ ◦ • ◦ 0.0007 

15 • ◦ • • 0.0002 

16 ◦ ◦ • • 0.0002 

0.2111 0.9859 0.8444 0.1946 
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12 
The median probability model , i.e., the model including all those 

ariables that have a marginal inclusion probability ≥0.5 [59,60] , 

ere also coincides with the most probable model. The three most 

robable models also match the top 3 models based on the Akaike 

nformation criterion (AIC) as quoted by Cinar et al. [49] . 

Table 4 shows the parameter estimates from the most probable 

odel. Instead of singling out one “best” model for inference, one 

ight now also utilize the results in a model averaging approach, 

ffectively using all 16 models simultaneously and weighting pre- 

ictions based to their associated probabilities [54–58] . 

It should be noted that, in a sense, the example shown here 

as particularly “simple” since all variables considered were in the 

ame “units” (binary), so that it is relatively easy to specify a neu- 

ral prior without favouring any of the variables from the start. In 

ractice, it might also be of interest to check the results’ sensitivity 

o any of the prior specifications, or to also investigate the possi- 

le relevance of interaction effects (as a simple additive effect of 

he two fertilizers may or may not be biologically plausible). 

In the model selection context, the use of penalized complexity 

riors [65] may also play a more prominent role than in “simple”

eta-analysis applications. Penalized complexity priors here corre- 

pond to exponential priors for the heterogeneity ( τ ) [31] . 

. Discussion 

In the present article, we demonstrated the use of Bayesian 

eta-regression as facilitated through the bayesmeta R package 

11] . The implementation is conveniently based on the direct algo- 

ithm [10] and constitutes a straightforward generalisation of “sim- 

le” meta-analysis within the NNHM framework [12] . This way, a 

ide range of extensions such as subgroup analysis, continuous co- 

ariables, indirect comparisons, or model selection are covered. 

While Bayesian analyses sometimes tend to be technically de- 

anding, through to its user-friendly interface, its generality and 

he quick and reproducible computation, the bayesmeta imple- 

entation provides a low-threshold entry point for a wider au- 

ience beyond computational experts. While a certain amount of 

reparation certainly is still required, it is relatively easy to ex- 

end an existing bayesmeta implementation to include covari- 

bles in addition, whereas the effort required to run, diagnose 

nd possibly implement an MCMC approach would be substantially 

igher. In many applications, use of the bmr() , forestplot() 
nd summary() functions may already be sufficient to address 

ost relevant questions. More sophisticated investigations are pos- 

ible using the comprehensive output available (such as custom 

lots (see Sections 3.2 –3.4 ), model selection (see Section 3.5 ) or 

odel averaging [58] ). 

The meta-regression approach presented here builds on the 

NHM, which yields accurate inference in particular also in case 

f few studies [34] . A normal approximation at the study-level is 

ften appropriate, for example when sample sizes are “large” and 

nd studies are sufficiently powered. However, the normal approx- 

mation may also deteriorate in certain circumstances, for exam- 

le, for binary endpoints with zero (or near-zero) event counts. In 
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uch cases, use of an exact likelihood may be preferable [66,67] , as 

or example implemented in the metaStan R package [63] . This 

ackage also allows for model-based meta-analysis (MBMA) , where 

tudies may contribute information on several (more than two) 

tudy arms that correspond to different exposures or dose levels 

68,69] . Similarly, the bmeta package provides meta-analysis and 

eta-regression functionalities based on MCMC sampling [70] . The 

BesT package also supports meta-analysis based on a range of 

ndpoint types, with a focus on deriving (“meta-analytic-predictive 

MAP)”) prior distributions for use in a subsequent analysis [71] . 

n the example applications we included indirect comparisons as a 

ery basic example of a treatment network; more complex models 

ommonly applied for network meta-analysis (see e.g. [ 30 , Sec. 11]) 

re currently not implemented in the bayesmeta package. Dedi- 

ated packages are available for network meta-analyis, for instance 

maINLA , which utilizes the integrated nested Laplace approxima- 

ion (INLA) for posterior inference [72] . Recently, Williams et al. 

73] proposed meta-anaytic models with covariate effects on the 

eterogeneity variance besides the mean; these are implemented 

n the R package blsmeta . The bspmma and metaBMA R pack- 

ges implement extensions of the “simple” NNHM, but currently 

ithout the option for meta-regression [74,75] . Alternatively, many 

eta-analysis problems may also be formulated in terms of gen- 

ralized linear mixed models (GLMMs), which can be fitted for in- 

tance using the R package brms [76] . Most of the above alter- 

ative Bayesian packages rely on MCMC methods for inference. In 

ase a taylored solution is required, which is not covered by any 

f the mentioned packages, it is probably easiest to also resort to 

CMC methods, which may be implemented e.g. using the JAGS 

r Stan engines, and the interfacing rjags or rstan packages 

77–79] . For a comprehensive and up-to-date overview of available 

 packages, see also the corresponding CRAN task view [80] . 
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