Commit 80871ae2 authored by Jochen Schulz's avatar Jochen Schulz
Browse files

small fix (removed arr)

parent a8a5bd99
%% Cell type:markdown id: tags:
# poisson equation in 2d
- Poisson Problem also describes the stationary heat equation.
**Poisson equation** <br />
Find $u \in C^2(\Omega)\cap C(\overline{\Omega})$ with
$$\left \{ \begin{array}{rcll}- \triangle u & = & f & \mbox{in } \Omega\\
u & = & 0 & \mbox{auf } \partial \Omega\\ \end{array} \right.$$
for $\Omega=(0,1)^2$ and $f \in C(\Omega)$.
With $f = 0$ the equation is known as *laplace equation*
**Laplacian** <br />
$\triangle u := \sum_{i=1}^d \frac{\partial ^2 u}{\partial x_i^2}$
- equidistant gridsize: $h= \frac 1 N$,
$N \in \mathbb{N}$
- set of all gridpoints
$$Z_h := \left\{ (x,y) \in \overline{\Omega} \ \mid \ x=z_1h, \ y=z_2h \text{ mit } z_1,z_2 \in \mathbb{Z} \right\}.$$
- inner gridpoints: $\omega_h := Z_h \cap \Omega$
- approximation of $\frac{\partial ^2 u}{\partial x^2} (x,y)$
$$\frac{u(x -h,y) - 2 u(x,y) + u(x+h,y)}{h^2} = \frac{\partial ^2 u}{\partial
x^2} (x,y) + \mathcal{O}(h^2)$$
- approximation of $\frac{\partial ^2 u}{\partial y^2} (x,y)$
$$\frac{u(x ,y-h) - 2 u(x,y) + u(x,y+h)}{h^2} = \frac{\partial ^2 u}{\partial
y^2} (x,y) + \mathcal{O}(h^2)$$
- the sum gives the approximation for $\triangle u(x,y)$:
$$\frac{1}{h^2} \left( u(x,y-h) + u(x-h,y) - 4 u(x,y) + u(x,y+h) +
u(x+h,y) \right)$$
- definition $u_{i,j}:=u(ih,jh)$ ergibt an Gitterpunkten $(ih,jh)$
$$-u_{i,j-1} - u_{i-1,j} + 4 u_{i,j} - u_{i+1,j} - u_{i,j+1} = h^2 f_{ij}$$
with $i,j \in \{ 1, \dots , N-1 \}$ and $f_{ij}:=f(ih,jh)$.
- boundary conditions
$u_{0,i}=u_{N,i}=u_{i,0}=u_{i,N}=0$, $i=0, \dots ,N$.
- save 2D-values of $u$ in a vector: shape the inner variables
$$\begin{array}{cccc}
u(h,(N-1)h) & u(2h,(N-1)h) & \ldots & u((N-1)h,(N-1)h)\\
\vdots & \vdots & \vdots & \vdots \\
u(h,2h) & u(2h,2h) & \ldots & u((N-1)h,2h)\\
u(h,h), & u(2h,h) & \ldots & u((N-1)h,h)\\
\end{array}$$
this gives the vector $U_{i+(N-1)(j-1)}=u_{i,j}$.
Linear system for $U=(U_i)_{i=1}^{(N-1)^2}$
$$A U = F$$
with
- $F:=(f_i)_{i=1}^{(N-1)^2}$ mit $f_{i+(N-1)(j-1)}=f(ih,jh)$, $i,j \in \{1,
\dots ,N-1 \}$,
- $$A := \frac{1}{h^2} tridiag(-I_{N-1}, T, -I_{N-1}) \in \mathbb{R}^{(N-1)^2
\times (N-1)^2},$$
$$T := tridiag(-1,4,-1) \in \mathbb{R}^{(N-1)\times (N-1)}.$$
%% Cell type:code id: tags:
``` haskell
:extension NoMonomorphismRestriction
import Numeric.Container
import Numeric.LinearAlgebra.Algorithms
import Numeric.LinearAlgebra.Util
import Control.DeepSeq (force)
idx2grid :: Int -> Int -> (Int, Int)
idx2grid n i = (i `mod` n, i `div` n)
idxf :: Int -> (Int, Int) -> Double
idxf n (i, j)
| i == j = 4
| xi == xj && abs(yi - yj) == 1 = -1
| yi == yj && abs(xi - xj) == 1 = -1
| otherwise = 0
where (xi, yi) = idx2grid n i
(xj, yj) = idx2grid n j
poisson :: ([(Double, Double)], Matrix Double, Vector Double)
poisson = (mesh, reshape (n-1) $ head . toColumns $ loes, f)
where
n = 50
-- coordinates
x = linspace (n+1) (0,1::Double)
h = x @> 1
-- inner points
xInner = subVector 1 (n-1) x
mesh = [ (xj, yj) | xj <- toList xInner , yj <- toList xInner ]
-- laplace matrix
a = buildMatrix ((n-1)^2) ((n-1)^2) (idxf (n-1)) :: Matrix Double
-- right hand side
f = fromList $ map (\(x, y) -> (h^2)*x*(y^4)) mesh
-- solve linear system
loes = linearSolve a (asColumn f)
(me, loes, f) = poisson
```
%% Cell type:code id: tags:
``` haskell
import Graphics.Rendering.Plot
setPlots 1 1 >> withPlot (1, 1) (setDataset loes)
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` haskell
-- write out matrices to visualize with python
(xl,yl) = unzip me
xmat = reshape 49 (fromList xl)
ymat = reshape 49 (fromList yl)
-- create x and y matrix
saveMatrix "xmat.txt" "%f" xmat
saveMatrix "ymat.txt" "%f" ymat
saveMatrix "zmat.txt" "%f" loes
-- ../vis.py -x xmat.txt -y ymat.txt -z zmat.txt -t image
```
%% Cell type:markdown id: tags:
<img src="../images/poisson.png"></img>
%% Cell type:markdown id: tags:
## parallization
lets do the same in parallel using repa.
%% Cell type:code id: tags:
``` haskell
import Data.Array.Repa as R hiding ((++))
poissonOperator :: Int -> Array U DIM2 Double -> Array D DIM2 Double
poissonOperator n arr = fromFunction ext getElem
where ext = extent arr
get idx = if inShape ext idx then index arr idx else 0
getElem (Z:.i:.j) = ( - get (Z:.(i-1):.j) - get (Z:.(i+1):.j)
- get (Z:.i:.(j-1)) - get (Z:.i:.(j+1))
+ 4*get (Z:.i:.j))
* fromIntegral (n^2)
rhs :: Int -> Array U DIM2 Double
rhs n = computeS $ fromFunction (Z:.n:.n) $ \(Z:.i:.j) -> f (toCoord i) (toCoord j)
where h = 1 / fromIntegral n
toCoord k = h*fromIntegral k + 0.5
f x y = x*(y^4)
```
%% Cell type:markdown id: tags:
instead of HMatrix's `linearSolve`, we need a solver that works with Repa arrays.
%% Cell type:markdown id: tags:
## conjugate gradient solver
CG is a simple, efficient iterative solver for linear systems $A x = y$ with positive definite matrix A (i.e. $x^T A x \geq 0$ for all $x$).
%% Cell type:code id: tags:
``` haskell
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
import Control.Monad.Identity
import Data.Array.Repa as R hiding ((++))
data CGState sh = CGState { cgx :: Array U sh Double
, cgp :: Array U sh Double
, cgr :: Array U sh Double
, cgr2 :: Double
}
```
%% Cell type:markdown id: tags:
`Arr` is a type alias for convenience, `CGState` is the state of a CG iteration.
`CGState` is the state of a CG iteration.
CG takes a function implementing a linear operator (type `Arr sh U -> Arr sh D`), a right hand side and an initial guess and returns the (lazy, infinte) list of the `CGState`s of all iterations.
CG takes a function implementing a linear operator (type `Array U sh -> Array D sh `), a right hand side and an initial guess and returns the (lazy, infinte) list of the `CGState`s of all iterations.
Computations use Repa's parallel computation in a straight-forward way and needs to be performed in a monad. We use the `Identity` monad which does essentially nothing except for providing the sequencing. All operations are performed strictly using `BangPatterns`.
%% Cell type:code id: tags:
``` haskell
cg :: Shape sh => (Array U sh Double -> Array D sh Double) -> Array U sh Double -> Array U sh Double-> [CGState sh]
cg op rhs initial =
runIdentity $ do
!rInit <- computeP $ rhs -^ op initial
!r2Init <- normSquaredP rInit
return $ iterate cgStep (CGState initial rInit rInit r2Init)
where normSquaredP = sumAllP . R.map (^(2::Int))
scale a = R.map (* a)
-- the main iteration; maps a CGState to another CGState
cgStep (CGState x p r r2) =
runIdentity $ do
-- need inline type annotation here because computeP is polymorphic in its
-- output type (syntax like this requires ScopedTypeVariables)
!(q :: Array U sh Double) <- computeP $ op p
!qp <- sumAllP $ q *^ p
let alpha = r2 / qp
!x' <- computeP $ x +^ scale alpha p
!r' <- computeP $ r -^ scale alpha q
!r2' <- normSquaredP r'
let beta = r2' / r2
!p' <- computeP $ r' +^ scale beta p
return $ CGState x' p' r' r2'
```
%% Cell type:markdown id: tags:
Using lazyness, the iterations can be decoupled from stopping rule and output of information.
%% Cell type:code id: tags:
``` haskell
takeUntil :: (a -> Bool) -> [a] -> [a]
takeUntil _ [] = []
takeUntil predicate (x:xs)
| predicate x = [x]
| otherwise = x : takeUntil predicate xs
process :: Monad m => [a] -> (a -> m ()) -> m a
process xs f = foldM (\_ x -> f x >> return x) undefined xs
runCG :: Shape sh => Double -> (Array U sh Double -> Array D sh Double) -> Array U sh Double -> IO (Array U sh Double)
runCG tol op rhs = do
let initial = computeS $ fromFunction (extent rhs) (const 0)
let steps' = cg op rhs initial
let r20 = cgr2 $ head steps'
let steps = takeUntil (\x -> sqrt (cgr2 x / r20) < tol) steps'
result <- process (zip [(1::Int)..] steps) $ \(n, cgs) ->
putStrLn $ show n ++ " " ++ show (sqrt $ cgr2 cgs / r20)
return $ cgx . snd $ result
```
%% Cell type:markdown id: tags:
- `takeUntil` is like `takeWhile`, but also returns the final iterate (why waste it?).
- `process` runs over a list, performs a monadic action on each element and returns the last element. It does not retain the start of the list while iterating, so it gets garbage collected properly.
- `runCG` executes `cg` with initial guess 0, a stopping rule based on residuals relative to the first initial guess, and outputs the residual while iterating.
### Example
%% Cell type:code id: tags:
``` haskell
solution <- let n = 50 in runCG 1e-3 (poissonOperator n) (rhs n)
```
%%%% Output: display_data
%% Cell type:code id: tags:
``` haskell
import Data.Packed.Repa
setPlots 1 1 >> withPlot (1, 1) (setDataset $ repaToMatrix $ copyS solution)
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
## Stencils
Operators like `poissonOperator` are a frequent pattern: each element of the resulting array is a linear combination of the surrounding elements of the input array.
Repa has special means for constructing such operations in 2-d: Stencils.
```haskell
makeStencil2 :: Num a => Int -> Int -> (DIM2 -> Maybe a) -> Stencil DIM2 a
```
%% Cell type:code id: tags:
``` haskell
import Data.Array.Repa.Stencil.Dim2
poissonStencil :: Integer -> Stencil DIM2 Double
poissonStencil n = makeStencil2 3 3 getElem
where val = fromIntegral n^2
getElem (Z:. -1 :. 0) = Just $ -val
getElem (Z:. 1 :. 0) = Just $ -val
getElem (Z:. 0 :. -1) = Just $ -val
getElem (Z:. 0 :. 1) = Just $ -val
getElem (Z:. 0 :. 0) = Just $ 4*val
getElem _ = Nothing
```
%% Cell type:markdown id: tags:
Stencils are applied to 2-d arrays using
```haskell
mapStencil2 :: Source r a => Boundary a -> Stencil DIM2 a -> Array r DIM2 a -> Array PC5 DIM2 a
```
- `Boundary a` is a type that handles the boundary conditions. It can be
- `BoundFixed x` returns a fixed value `x` at the boundary,
- `BoundConst x` assumes pixels outside the array have the value `x`,
- `BoundClamp` extends the boundary values to outside the boundary,
where `x :: a`
- `PC5` is a special representation for stencil results; it is defined as
```haskell
type PC5 = P C (P (S D) (P (S D) (P (S D) (P (S D) X))))
```
(No need to understand this.)
- `PC5` arrays can be converted to `D` arrays using the polymorphic function
```haskell
delay :: (Shape sh, Source r e) => Array r sh e -> Array D sh e
```
An alternative way to solve the Poisson problem with Repa is then
%% Cell type:code id: tags:
``` haskell
poissonOperator :: Integer -> Array U DIM2 Double -> Array D DIM2 Double
poissonOperator n = delay . mapStencil2 (BoundConst 0) (poissonStencil n)
solution <- let n = 50 in runCG 1e-3 (poissonOperator n) (rhs n)
```
%%%% Output: display_data
%% Cell type:markdown id: tags:
### Stencil syntax
There is special syntax for stencils. The `poissonStencil` above can be produced more easily by
%% Cell type:code id: tags:
``` haskell
{-# LANGUAGE QuasiQuotes #-}
poissonStencil :: Stencil DIM2 Double
poissonStencil = [stencil2| 0 -1 0
-1 4 -1
0 -1 0 |]
```
%% Cell type:markdown id: tags:
The syntax is processed at compile time, so scaling is not possible in this version:
%% Cell type:code id: tags:
``` haskell
{-# LANGUAGE QuasiQuotes #-}
poissonStencil :: Stencil DIM2 Double
poissonStencil n = [stencil2| 0 (-val) 0
(-val) (4*val) (-val)
0 (-val) 0 |]
where val = fromIntegral n^2
```
%%%% Output: display_data
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment