SUB RDD Technical Reference

5. Mai 2020

<https://github.com/subugoe/rdd-technical-reference>

Table of Contents

1

2

About this Document

Style Guides
2.1 General
2.2 Specific for Programming Languages

Is Your Software Fully Documented?
3.1 DocSprints
3.2 General
3.3 Developer Documentation
3.3.1 Architecture of the Software
3.3.2 API Documentation
3.4 Admin Documentation
3.5 Server documentation:
3.6 User Documentation

Which version control do you use? You do use version con-

trol, do you?
Do you track your bugs properly?
Do you test your software?

Building Code and Continuous Integration
7.1 Building Code o oo
7.2 Continuous Integration
7.2.1 Sample configuration of the GitLab Runner
7.2.2 Sample configuration of the Jenkins CI (Multibranch
Pipelines)

Deployment and maintenance

8.1 Puppet
8.1.1 Monitoring Lo
8.1.2 Release Management

Code quality level for RDD

9.1 Codereview L e
9.1.1 Sample workflow: Code reviews in SADE

9.2 Proofof concept

10 Licensing

11 Retirement of software

10
10
11
11

11
11
11
12

12

12

12 Helpful links and references

12

1 About this Document

Author: Software Quality Working Group

Audience: Developers of the Research and Development Department of
the Gottingen State and University Library.
Purpose: This guideline should help you getting started a new software
development project (or improving an existing one!) in the Research and
Development Department of the Goéttingen State and University Library.
Our goal is to establish better software quality by following standards
the developer team has mutually agreed upon. Roughly basing on the EURI-
SE Network Technical Reference, these standards are discussed, worked out,
and decided in the Software Quality Working Group, which meets biweekly
on Tuesdays at 13:00-14:00. However, they aren’t cast in stone, so in case
you have a good idea for a better standard, feel free to contribute!

Status: This document is a living document and will be extended as soon
as the Software Quality Working Group has agreed upon a new standard
for software projects in RDD. TODOs and addenda of this document are
maintained here.

2 Style Guides

2.1 General

The basic definitions are given by our EditorConfig file, .editorconfig,
i.e. Unix line breaks and 2 space indentation.

2.2 Specific for Programming Languages

For the more prominent programming languages we have formatting and
general style guides we ask you to follow:

e Java: The Java style guide can be found here. It’s based on the Google
style guide for Java with some minor RDD specific settings. You can
configure Eclipse to use it automatically at Eclipse > Preferences >
Java > Code Style > Formatter. Just load the RDD Eclipse Java
Google Style in the formatter preferences and use it in your RDD
projects.

e JavaScript: For JS we use the Airbnb JavaScript Style Guide.

e HTML /CSS: For HTML/CSS we agreed upon the Google HTML/CSS
Style Guide.

e XQuery: We use the xqdoc style guide with the following addenda:

https://eurise-network.github.io/
https://eurise-network.github.io/
https://github.com/subugoe/rdd-technical-reference/issues/
http://editorconfig.org/
./styles/rdd-eclipse-java-google-style.xml
https://github.com/google/styleguide
https://github.com/google/styleguide
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://github.com/airbnb/javascript
https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html
http://xqdoc.org/xquery-style.pdf

— use double quotes instead of single quotes (for easy escaping)

— use four spaces for a TAB (because eXide switching the prefe-
rences in eXide’s setting isn’t permanent)

XSLT: Since there is no official style guide for XSLT, we decided to
write our own, resulting from common best practices and own experi-
ences within the department.

Python: For Python PEP 8 should be used, Django has a style guide
based on PEP-8 with some exceptions: Django-Styleguide. There are
linters and tools like flake-8 and pep-8 available as support.

SPARQL: For SPARQL there is not really any official style guide and
there is no possibility to simply include any code style automatically
using a code style file. We just collect some advice how to format and
use SPARQL code here.

3 Is Your Software Fully Documented?

3.1

Doc Sprints

To ensure the best documentation of our code we meet on a weekly base for
a code sprint to document everything we have coded throughout the week
and haven’t been able to document properly yet. The meeting takes place
in the meeting room at 1pm. Cookies may be provided.

3.2

General

Don’t document a language’s specifics, e.g. operators.
Ezxample: Use of => in the XQuery expression replace("gbc", "q",
"b") => substring(l, 2) MUST NOT be explained in a comment.

It is best to use a language’s structure to document.
Write the best documentation you can.
Documentation and variable language is American English.

Docs should be as close to the code as possible.
This refers both to the documentation in a repository and in the code
itself, e.g. inline documentation.

Every code repository MUST have:

— a README.md file according to this template that contains

x link to original repository (if the software is forked or other-
wise based on preexisting software)

https://github.com/subugoe/rdd-technical-reference/tree/master/style-guides/rdd-xslt.md
https://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://pypi.org/project/flake8/
https://pypi.org/project/pep8/
https://github.com/subugoe/rdd-technical-reference/tree/master/style-guides/rdd-sparql.md
https://gist.github.com/PurpleBooth/109311bb0361f32d87a2

x short introduction on what the repository is about
a guide how to get the software running (if makes sense)
link to demo instance

k
*
* example or demo installation
* link to license file

*

contribution guide
x link to style guide
« link to bug tracker/project management system
* known issues
* badges to CI status

— a LICENSE file

3.3 Developer Documentation
3.3.1 Architecture of the Software

Each software project should be documented using an architecture diagram
that helps understanding its basic functionality (even though using tools to
generate diagrams such as UML class diagrams doesn’t seem to be possible
in every case).

Examples:

e Generating call graphs in eXist-db

Call diagrams can be useful to follow code and service calls and should
be existing for every API method.
3.3.2 API Documentation

e The docs should comprise used parameters, author and @since anno-
tations

e Example for Java

e Links to callers must not be listed in the documentation, because this
info will be deprecated soon. It is strongly recommended to use call
stacks of tools like Eclipse (Java) and/or Call Graph Module (SADE).

e Document REST-APIs using openAPI if possible. OpenAPI docs should
be located at /doc/api on servers.
3.4 Admin Documentation

e The docs should comprise how to install the software, how to run
and/or restart it, how to test the installation, ...

https://gitlab.gwdg.de/SADE/SADE/tree/develop/modules/callgraph
https://lab.sub.uni-goettingen.de/self-updating-docs.html
https://github.com/OAI/OpenAPI-Specification

3.5 Server documentation:

This type of documentation is provided and maintained in our DARIAH
wiki space.

We have a template encompassing all information necessary: To create a
wiki page for a new server navigate to the FE Server list, select “...” right
beside the “Create” button and search for “FE-Server”.

3.6 User Documentation

e how to use the software and APIs, FAQs, walkthroughs, ...

e guided tour (Bootstrap Tour) as user documentation

— for SADE portal usage (such as Fontane, BAN, Architrave)
— for complex Digital Editions

e screencasts

4 Which version control do you use? You do use
version control, do you?

We exclusively use git in RDD. Please see https://git-scm.com/doc for
information on how it works.

We recommend to use the Git flow Workflow (also consult the Cheat
Sheet). For git flow it is safest to protect your master and develop branch
on server side to avoid accidental pushes into these branches. All specific
branches working on an issue described in a bug tracker may utilize the
following naming scheme:

[track] /#[ISSUENUMBER] - [KEYWORD]

e.g. bugfix/#12-flux-capacitor.

A GitHub workflow used in DARIAH-DE and related services is descri-
bed in the DARIAH-DE Wiki.

You could also use the GitLab flow as a simpler alternative, which can
be broken down into 11 Rules.

It is also recommended to automatically close issues via commit message;
How this works exactly depends on the Git repository server. Issues can also
be referenced across repositories.

We use the following Git servers at the moment in RDD:

e Projects (GWDG) —> https://projects.gwdg.de

https://git-scm.com/doc
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://danielkummer.github.io/git-flow-cheatsheet
https://danielkummer.github.io/git-flow-cheatsheet
https://wiki.de.dariah.eu/display/DARIAH3/DARIAH-DE+Release+Management#DARIAH-DEReleaseManagement-Beispielmitdevelop-undmaster-Branch(Gitflow)
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://about.gitlab.com/blog/2016/07/27/the-11-rules-of-gitlab-flow/
https://help.github.com/articles/autolinked-references-and-urls/#commit-shas
https://projects.gwdg.de

e GitLab (GWDG) —> https://gitlab.gwdg.de
e github.org —> https://github.com/subugoe
Which one is suitable for you depends on:

e the project you are working on

e existing code

e whether or not you want to use CI/CD or GitLab Runners

We have got an RDD team on GitHub. Feel free to join us!

Consider mirroring of repos for project visibility (e.g. mirror GitLab/Projects

code to Github?)

5 Do you track your bugs properly?

A bug tracking system is obligatory! Please use the respective bug tracking
system of your repo and/or project management solution (please see chapter
version control)!

6 Do you test your software?

We aim to have a test coverage of 100% (except for getter and setter me-
thods). This is understood on a component level, which means that every
method should have at least one test. Whether you achieve this by Test
Driven Development (TDD) or not is specific to your preferred way to work.
Please keep in mind not only to write a test for each of your functions
but also to consider all possible outcomes. It is e.g. not sufficient to test if a
function creates a file if the written content depends on variables etc.
Examples for writing tests in different programming languages are:

e XQuery

7 Building Code and Continuous Integration

7.1 Building Code

Ideally, we use build tools to conveniently get a software running. The reason
for using a build tool is to be able to build and/or test a code project with
one command (after checking out). Another reason is to include dependency
management.

https://gitlab.gwdg.de
https://github.com/subugoe
https://github.com/orgs/subugoe/teams/fe
https://gist.github.com/joewiz/fa32be80749a69fcb8da

Build tools we are using at the moment
e bash scripting: (BdNPrint, FontanePrint)
o eXist: Ant (SADE)

e Java:

— Maven (TextGrid)
— gradle (TextGrid)

JavaScript:

— bower (DARIAH-DE GeoBrowser, tgForms)
cake (tgForms)

NPM (DARIAH-DE Publikator, tgForms)
— rake (DARIAH-DE GeoBrowser)

Python:

— make (Sphinx documentation)
— PIP (DiscussData)

Ruby: bundler (DARIAH status page)

Build tools we want to evaluate

e gradle

7.2 Continuous Integration

We want to use CI as soon as possible in new projects. Please set up

your gitlab-project to show your pipeline-status and test-coverage for your

default-branch under Settings/General->Badges. The generic links for all

projects are: * Pipeline-status - Link: https://gitlab.gwdg.de/%{project_path}/commits/%{default_

- Badge image URL: https://gitlab.gwdg.de/%{project_path}/badges/%{default_branchl}/pipelir

* Test-coverage - Link: https://gitlab.gwdg.de/%{project_path}/commits/%{default_branch}

- Badge image URL: https://gitlab.gwdg.de/%{project_pathl}/badges/%{default_branch}/coverag
The workflows we are using currently in Jenkins and GitLab Runner are:

e Code building
e Testing

e Code analyzer (Sonar)

e Packaging (JAR, WAR, DEB, XAR)
e Distribution (Nexus, APTLY repo, eXist repo)

e Release Management (via GitLab Environments and gitflow)

7.2.1 Sample configuration of the GitLab Runner

There is a full and documented example of how the GitLab Runner is used
in SADE.

7.2.2 Sample configuration of the Jenkins CI (Multibranch Pi-
pelines)

e On commit and push to the https://projects.gwdg.de gitolite repo
(such ashttps://projects.gwdg.de/projects/tg-crud/repository)
Jenkins on ci.de.dariah.eu is notified (see projects’ gitolite configura-
tion)

e Jenkins then does a checkout and build of configured branches (see
Jenkins’ project’s multibranch pipeline configuration such as https:
//ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services.

e Stage Preparation: Prepare things

e Stage Build: Build, JAR, WAR, and DEB packages from source code,
deploy JAR and WAR packages to the Nexus repo. For further infor-
mation on Nexus cf. ci’s server documentation. Jenkins is configured
to deploy JARs and WARs via Maven and a Nexus deploy-account.

e Stage Publish: Publish DEB packages to the DARIAH-DE Aptly Repo.
Jenkins is using a shared library of scripts and publishing is devided
into four conditionals: TG version, DH version, SNAPSHOT version,
or RELEASE version due to given version suffixes!

8 Deployment and maintenance

8.1 Puppet

For server configuration and setup we use puppet for most servers. The main
puppet code is provided in GitLab https://gitlab.gwdg.de/dariah-de-puppet.
The DARIAH-DE and TextGrid Repository module (dhrep) is contained in
Github https://github.com/DARIAH-DE/puppetmodule-dhrep.

10

https://gitlab.gwdg.de/SADE/SADE/blob/develop/.gitlab-ci.yml
https://projects.gwdg.de
https://projects.gwdg.de/projects/tg-crud/repository
https://ci.de.dariah.eu/jenkins
https://ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services
https://ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services
https://nexus.gwdg.de
https://wiki.de.dariah.eu/display/FEAD/ci.de.dariah.eu
https://ci.de.dariah.eu/aptly
https://gitlab.gwdg.de/dariah-de-puppet
https://github.com/DARIAH-DE/puppetmodule-dhrep

8.1.1 Monitoring

e Icinga probes for DARIAH-DE services https://icinga.de.dariah.
eu/icinga

e Metrics for Sever specific monitoring https://metrics.gwdg.de

8.1.2 Release Management
9 Code quality level for RDD

9.1 Code review

We want to ensure code review for all major commits, in gitflow for every-
thing that is subject to be merged into develop.

For projects with more than one developer in the team it is preferred
to have code reviews within the team, in other cases your friendly RDD
developer team is on your side.

e idea: invite all developers to a MR, at least 2 approvals needed for MR
taking place. this way, everybody gets the chance to have a look at
other people’s code

9.1.1 Sample workflow: Code reviews in SADE

1. A developer decides to work on a feature. She commits her changes
to a separate feature branch. After some time she finishes the feature
and wants it to be part of the development branch.

2. The developer creates a merge request and assigns everybody she sees
fit to properly review her code to it.

3. To avoid diffusion of responsibility, she also assigns one of the chosen
assignees as MUST. This means that this person has to approve the
MR, otherwise the merge cannot be done. Although GitLab sends
notifications to everybody who is newly assigned to a MR, she should
notify the MUST assignee personally (in case he or she doesn’t notice
the mail sent by GitLab).

4. The MUST assignee reviews the changes according to style, variable
naming, understandability, documentation provided, functionality, etc.
If everything is to his or her liking, he or she approves the MR. The
other assignees are free to review the code as well. Note: MRs without
docs should not be accepted.

5. After the MR has been (dis)approved, the assignee removes his- or
herself from the list of assignees. The MUST assignee informs the
developer over the review being done.

11

https://icinga.de.dariah.eu/icinga
https://icinga.de.dariah.eu/icinga
https://metrics.gwdg.de

6. The developer merges her changes into the development branch.

9.2 Proof of concept

When preparing a proof of concept that is always labeled poc, a code review
is not necessary.

10 Licensing
e clarify software license before programming

e add license to code header

Best practice is to maintain a file listing all third-party packages that
are part of the software. This list should hold the following metadata and
SHOULD be prepared like the table below, always in alphanumeric order.

| name | license | origin |
| -————- | -=————- |- |

| foo | barware | github.com/foo/bar |

Maybe the license-maven plugin will help you.

11 Retirement of software

e clarify if software is no longer supported

12 Helpful links and references

o EURISE-network technical-reference:
https://github.com/eurise-network/technical-reference

e DHTech — An international grass-roots community of Digital Huma-
nities software engineers:
https://dh-tech.github.io

e The Software Sustainability Institute, Guidelines and Publications:
https://www.software.ac.uk

e The Joel Test: 12 Steps to Better Code:
https://www. joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better

e Software Quality Guidelines:
https://github.com/CLARIAH/software-quality-guidelines

12

https://github.com/eurise-network/technical-reference
https://dh-tech.github.io
https://www.software.ac.uk
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://github.com/CLARIAH/software-quality-guidelines

e Software Testing Levels:
http://softwaretestingfundamentals.com/software-testing-levels

e Netherlands eScience Center Guide
https://guide.esciencecenter.nl

13

http://softwaretestingfundamentals.com/software-testing-levels
https://guide.esciencecenter.nl

	About this Document
	Style Guides
	General
	Specific for Programming Languages

	Is Your Software Fully Documented?
	Doc Sprints
	General
	Developer Documentation
	Architecture of the Software
	API Documentation

	Admin Documentation
	Server documentation:
	User Documentation

	Which version control do you use? You do use version control, do you?
	Do you track your bugs properly?
	Do you test your software?
	Building Code and Continuous Integration
	Building Code
	Continuous Integration
	Sample configuration of the GitLab Runner
	Sample configuration of the Jenkins CI (Multibranch Pipelines)

	Deployment and maintenance
	Puppet
	Monitoring
	Release Management

	Code quality level for RDD
	Code review
	Sample workflow: Code reviews in SADE

	Proof of concept

	Licensing
	Retirement of software
	Helpful links and references

