
SUB RDD Technical Reference

8. Mai 2020

<https://github.com/subugoe/rdd-technical-reference>

1

Table of Contents

1 About This Document 4

2 Explanatory Notes 4

3 Style Guides 4
3.1 General . 4
3.2 For Specific Programming Languages 4

4 Documentation 5
4.1 Doc Sprints . 5
4.2 General Notions about Documentation 5
4.3 Developer Documentation . 6

4.3.1 Software Architecture 6
4.3.2 API Documentation 7
4.3.3 CESSDA’s Software Maturity Levels in RDD (CA1.3) 7

4.4 Admin Documentation . 7
4.4.1 CESSDA’s Software Maturity Levels in RDD (CA1.2) 7

4.5 Server Documentation . 8
4.6 User Documentation . 8

4.6.1 CESSDA’s Software Maturity Levels in RDD (CA1.1) 8

5 Version Control 9

6 Bug Tracking 10

7 Software Tests 10

8 Building Code and Continuous Integration 10
8.1 Building Code . 10
8.2 Packaging . 11

8.2.1 CESSDA’s Software Maturity Levels in RDD (CA5) . 11
8.3 Continuous Integration . 12

8.3.1 Sample Configuration of the GitLab Runner 12
8.3.2 Sample Configuration of the Jenkins CI (Multibranch

Pipelines) . 12

9 Deployment and Maintenance 13
9.1 Puppet . 13

9.1.1 Monitoring . 13
9.1.2 Release Management 13

2

10 Code quality level for RDD 13
10.1 Code Reviews . 13

10.1.1 Sample Workflow: Code Reviews in SADE 14
10.2 Proof of Concept . 14

11 Intellectual Property 14
11.1 Licensing . 14
11.2 CESSDA’s Software Maturity Levels in RDD (CA2) 15

12 CESSDA – Decisions 16
12.1 CA3: Extensibility . 16
12.2 CA4: Modularity . 16
12.3 CA6: Portability . 17
12.4 CA7: Standards Compliance 17
12.5 CA8: Support . 17
12.6 CA9: Verification and Testing 18
12.7 CA10: Security . 18
12.8 CA11: Internationalisation and Localisation 18
12.9 CA12: Authentication and Authorisation 18

13 Retirement of Software 19

14 Helpful Links and References 19

3

1 About This Document

Author: Software Quality Working Group

Audience: Developers of the Research and Development Department of
the Göttingen State and University Library.
Purpose: This guideline should help you getting started a new software
development project (or improving an existing one!) in the Research and
Development Department of the Göttingen State and University Library.

Our goal is to establish better software quality by following standards
the developer team has mutually agreed upon. Roughly basing on the EURI-
SE Network Technical Reference, these standards are discussed, worked out,
and decided in the Software Quality Working Group, which meets biweekly
on Tuesdays at 13:00–14:00. However, they aren’t cast in stone, so in case
you have a good idea for a better standard, feel free to contribute!

Status: This document is a living document and will be extended as soon
as the Software Quality Working Group has agreed upon a new standard
for software projects in RDD. TODOs and addenda of this document are
maintained here.

2 Explanatory Notes

CESSDA’s Software Maturity Levels (SML): Several organizations
already have put a lot of work into developing metrics for good software.
Since we didn’t want to reinvent the wheel, we decided to adapt (and modify
if need be) a metric which suits our needs. CESSDA is one of the ERICs, and
although it focuses on Social Sciences it has similar requirements regarding
its software.

Throughout the document you will find sections with the heading “CESS-
DA’s Software Maturity Levels in RDD” in which we describe which of the
SMLs we aim for and how we want to implement it.

3 Style Guides

3.1 General

The basic definitions are given by our EditorConfig file, .editorconfig,
i.e. Unix line breaks and 2 space indentation.

3.2 For Specific Programming Languages

For the more prominent programming languages we have formatting and
general style guides we ask you to follow:

4

https://eurise-network.github.io/
https://eurise-network.github.io/
https://github.com/subugoe/rdd-technical-reference/issues/
https://www.cessda.eu/
http://editorconfig.org/

• Java: The Java style guide can be found here. It’s based on the Google
style guide for Java with some minor RDD specific settings. You can
configure Eclipse to use it automatically at Eclipse > Preferences >
Java > Code Style > Formatter. Just load the RDD Eclipse Java
Google Style in the formatter preferences and use it in your RDD
projects.

• JavaScript: For JS we use the Airbnb JavaScript Style Guide.

• HTML/CSS: For HTML/CSS we agreed upon the Google HTML/CSS
Style Guide.

• XQuery: We use the xqdoc style guide with the following addenda:

– use double quotes instead of single quotes (for easy escaping)
– use four spaces for a TAB (because eXide switching the prefe-

rences in eXide’s setting isn’t permanent)

• XSLT: Since there is no official style guide for XSLT, we decided to
write our own, resulting from common best practices and own experi-
ences within the department.

• Python: For Python PEP 8 should be used, Django has a style guide
based on PEP-8 with some exceptions: Django-Styleguide. There are
linters and tools like flake-8 and pep-8 available as support.

• SPARQL: For SPARQL there is not really any official style guide and
there is no possibility to simply include any code style automatically
using a code style file. We just collect some advice how to format and
use SPARQL code here.

4 Documentation

4.1 Doc Sprints

To ensure the best documentation of our code we meet on a weekly base for
a code sprint to document everything we have coded throughout the week
and haven’t been able to document properly yet. The meeting takes place
in the meeting room at 1pm. Cookies may be provided.

4.2 General Notions about Documentation

• Don’t document a language’s specifics, e.g. operators.
Example: Use of => in the XQuery expression replace("qbc", "q",
"b") => substring(1, 2) MUST NOT be explained in a comment.

5

./styles/rdd-eclipse-java-google-style.xml
https://github.com/google/styleguide
https://github.com/google/styleguide
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://github.com/airbnb/javascript
https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html
http://xqdoc.org/xquery-style.pdf
https://github.com/subugoe/rdd-technical-reference/tree/master/style-guides/rdd-xslt.md
https://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://pypi.org/project/flake8/
https://pypi.org/project/pep8/
https://github.com/subugoe/rdd-technical-reference/tree/master/style-guides/rdd-sparql.md

• It is best to use a language’s structure to document.

• Write the best documentation you can.

• Documentation and variable language is American English.

• Docs should be as close to the code as possible.
This refers both to the documentation in a repository and in the code
itself, e.g. inline documentation.

• Every code repository MUST have:

– a README.md file according to this template that contains

∗ link to original repository (if the software is forked or other-
wise based on preexisting software)

∗ short introduction on what the repository is about
∗ a guide how to get the software running (if makes sense)
∗ link to demo instance
∗ example or demo installation
∗ link to license file
∗ contribution guide
∗ link to style guide
∗ link to bug tracker/project management system
∗ known issues
∗ badges to CI status

– a LICENSE file

4.3 Developer Documentation

4.3.1 Software Architecture

Each software project should be documented using an architecture diagram
that helps understanding its basic functionality (even though using tools to
generate diagrams such as UML class diagrams doesn’t seem to be possible
in every case).

Examples:

• Generating call graphs in eXist-db

Call diagrams can be useful to follow code and service calls and should
be existing for every API method.

6

https://gist.github.com/PurpleBooth/109311bb0361f32d87a2
https://gitlab.gwdg.de/SADE/SADE/tree/develop/modules/callgraph

4.3.2 API Documentation

• The docs should comprise used parameters, author and @since anno-
tations

• Example for Java

• Links to callers must not be listed in the documentation, because this
info will be deprecated soon. It is strongly recommended to use call
stacks of tools like Eclipse (Java) and/or Call Graph Module (SADE).

• Document REST-APIs using openAPI if possible. OpenAPI docs should
be located at /doc/api on servers.

4.3.3 CESSDA’s Software Maturity Levels in RDD (CA1.3)

MUST MUST be SML2, which is defined as follows:

There is external documentation that describes public API func-
tionality and is sufficient to be used by an experienced developer.
If available, source code is consistently and clearly commented.
Source code naming conventions are adhered to and consistent.

Actions to Be Taken in RDD

• provide a fully documented public API, e.g. by using OpenAPI

• naming conventions still have to be discussed –> style guide?

• reference to style guide used in the CONTRIBUTING/README file?

4.4 Admin Documentation

• The docs should comprise how to install the software, how to run
and/or restart it, how to test the installation, . . .

4.4.1 CESSDA’s Software Maturity Levels in RDD (CA1.2)

MUST MUST be SML3, which is defined as follows:

There is a deployment and configuration manual that can guide
an experienced operational user through deployment, manage-
ment and configuration of the software. Exception and failure
messages are explained, but descriptions of solutions are not
available. Documentation is consistent with current version of
the software.

7

https://lab.sub.uni-goettingen.de/self-updating-docs.html
https://github.com/OAI/OpenAPI-Specification

Actions to Be Taken in RDD

• deployment: short deployment descriptions can be provided in the
README, more detailed explanations should be kept separately (such
as INSTALL(.md), linked from README)

• exception and failure messages are described in doc strings/function
annotations

• function documentation should be generated automatically and made
available/searchable in the web (such as readthedocs, javadoc html,
etc. pp.)

4.5 Server Documentation

This type of documentation is provided and maintained in our DARIAH
wiki space.

We have a template encompassing all information necessary: To create a
wiki page for a new server navigate to the FE Server list, select “. . . ” right
beside the “Create” button and search for “FE-Server”.

4.6 User Documentation

This may encompass:

• how to use the software and APIs, FAQs, walkthroughs, . . .

• guided tour (Bootstrap Tour) as user documentation

– for SADE portal usage (such as Fontane, BdN, Architrave)
– for complex Digital Editions

• screencasts

4.6.1 CESSDA’s Software Maturity Levels in RDD (CA1.1)

MUST MUST be SML2, which is defined as follows:

There is external documentation that is accessible and sufficient
for an expert user to configure and use the software for the user’s
individual needs. Terminology and methodology is not explained.

Actions to Be Taken in RDD

• a README(.md) has to be available in the source code repository
(cf. General Notions about Documentation)

8

SHOULD SHOULD be SML3, which is defined as follows:

There is a user manual that can guide a reasonably skilled user
through use and customisation of the software to the user’s in-
dividual requirements. Documentation is consistent with current
version of the software.

Actions to Be Taken in RDD

• a more detailed explanation is available for the user at some place
(such as user guide in wikis, etc. pp.)

• docs should also be provided in a docs directory in the source code
repository

• docs are revised regularly during our doc sprints

5 Version Control

We exclusively use git in RDD. Please see https://git-scm.com/doc for
information on how it works.

We recommend to use the Git flow Workflow (also consult the Cheat
Sheet).

For using git flow it is safest to protect your master and develop
branch on server side to avoid accidental pushes into these branches. All
specific branches working on an issue described in a bug tracker may utilize
the following naming scheme:

[track]/#[ISSUENUMBER]-[KEYWORD]

e.g. bugfix/#12-flux-capacitor.
A GitHub workflow used in DARIAH-DE and related services is descri-

bed in the DARIAH-DE Wiki.
You could also use the GitLab flow as a simpler alternative, which can

be broken down into 11 Rules.
It is also recommended to automatically close issues via commit message;

How this works exactly depends on the Git repository server. Issues can also
be referenced across repositories.

We use the following Git servers at the moment in RDD:

• Projects (GWDG) –> https://projects.gwdg.de

• GitLab (GWDG) –> https://gitlab.gwdg.de

• github.org –> https://github.com/subugoe

9

https://git-scm.com/doc
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://danielkummer.github.io/git-flow-cheatsheet
https://danielkummer.github.io/git-flow-cheatsheet
https://wiki.de.dariah.eu/display/DARIAH3/DARIAH-DE+Release+Management#DARIAH-DEReleaseManagement-Beispielmitdevelop-undmaster-Branch(Gitflow)
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://about.gitlab.com/blog/2016/07/27/the-11-rules-of-gitlab-flow/
https://help.github.com/articles/autolinked-references-and-urls/#commit-shas
https://projects.gwdg.de
https://gitlab.gwdg.de
https://github.com/subugoe

Which one is suitable for you depends on:

• the project you are working on

• existing code

• whether or not you want to use CI/CD or GitLab Runners

• . . .

We have got an RDD team on GitHub. Feel free to join us!
Consider mirroring of repos for project visibility (e.g. mirror GitLab/Projects

code to GitHub?)

6 Bug Tracking

A bug tracking system is obligatory! Please use the respective bug tracking
system of your repo and/or project management solution (please see chapter
Version Control)!

7 Software Tests

We aim to have a test coverage of 100% (except for getter and setter me-
thods). This is understood on a component level, which means that every
method should have at least one test. Whether you achieve this by Test
Driven Development (TDD) or not is specific to your preferred way to work.

Please keep in mind not only to write a test for each of your functions
but also to consider all possible outcomes. It is e.g. not sufficient to test if a
function creates a file if the written content depends on variables etc.

Examples for writing tests in different programming languages are:

• XQuery

8 Building Code and Continuous Integration

8.1 Building Code

Ideally, we use build tools to conveniently get a software running. The reason
for using a build tool is to be able to build and/or test a code project with
one command (after checking out). Another reason is to include dependency
management.

10

https://github.com/orgs/subugoe/teams/fe
https://gist.github.com/joewiz/fa32be80749a69fcb8da

Build tools we are using at the moment

• bash scripting: (bdnPrint, FontanePrint)

• eXist: Ant (SADE)

• Java:

– Maven (TextGrid)
– gradle (TextGrid)

• JavaScript:

– bower (DARIAH-DE GeoBrowser, tgForms)
– cake (tgForms)
– NPM (DARIAH-DE Publikator, tgForms)
– rake (DARIAH-DE GeoBrowser)

• Python:

– make (Sphinx documentation)
– PIP (DiscussData)

• Ruby: bundler (DARIAH status page)

8.2 Packaging

8.2.1 CESSDA’s Software Maturity Levels in RDD (CA5)

MUST MUST be SML5, which is defined as follows:

Demonstrable usability: A Continuous Integration server job (or
equivalent) is available to deploy the packaged/containerised soft-
ware. Administrators are notified if deployment fails. Versions of
deployed software can be upgraded/rolled back from a Conti-
nuous Integration server job (or equivalent). Data and/or index
files can be restored from a Continuous Integration server job
(or equivalent).

Actions to Be Taken in RDD

• examples for versions of deployed software: versioning of deb packages

• examples for rollback: rebuild index ElasticSearch from source data,
restore database backup

11

8.3 Continuous Integration

We want to use CI as soon as possible in new projects. Please set up your Git-
Lab project to show your pipeline-status and test-coverage for your default-
branch under Settings/General->Badges.

The generic links for all projects are:

• Pipeline-status

– Link: https://gitlab.gwdg.de/%{project_path}/commits/%{default_branch}

– Badge image URL: https://gitlab.gwdg.de/%{project_path}/badges/%{default_branch}/pipeline.svg?style=flat-square

• Test-coverage

– Link: https://gitlab.gwdg.de/%{project_path}/commits/%{default_branch}

– Badge image URL: https://gitlab.gwdg.de/%{project_path}/badges/%{default_branch}/coverage.svg?style=flat-square

The workflows we are using currently in Jenkins and GitLab Runner are:

• Code building

• Testing

• Code analyzer (Sonar)

• Packaging (JAR, WAR, DEB, XAR)

• Distribution (Nexus, APTLY repo, eXist repo)

• Release Management (via GitLab Environments and gitflow)

8.3.1 Sample Configuration of the GitLab Runner

There is a full and documented example of how the GitLab Runner is used
in SADE.

8.3.2 Sample Configuration of the Jenkins CI (Multibranch Pi-
pelines)

• On commit and push to the https://projects.gwdg.de gitolite repo
(such as https://projects.gwdg.de/projects/tg-crud/repository)
Jenkins on ci.de.dariah.eu is notified (see projects’ gitolite configura-
tion)

• Jenkins then does a checkout and build of configured branches (see
Jenkins’ project’s multibranch pipeline configuration such as https:
//ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services.

12

https://gitlab.gwdg.de/SADE/SADE/blob/develop/.gitlab-ci.yml
https://projects.gwdg.de
https://projects.gwdg.de/projects/tg-crud/repository
https://ci.de.dariah.eu/jenkins
https://ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services
https://ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services

• Stage Preparation: Prepare things

• Stage Build: Build, JAR, WAR, and DEB packages from source code,
deploy JAR and WAR packages to the Nexus repo. For further infor-
mation on Nexus cf. ci’s server documentation. Jenkins is configured
to deploy JARs and WARs via Maven and a Nexus deploy-account.

• Stage Publish: Publish DEB packages to the DARIAH-DE Aptly Repo.
Jenkins is using a shared library of scripts and publishing is devided
into four conditionals: TG version, DH version, SNAPSHOT version,
or RELEASE version due to given version suffixes!

9 Deployment and Maintenance

9.1 Puppet

For server configuration and setup we use puppet for most servers. The main
puppet code is provided in GitLab https://gitlab.gwdg.de/dariah-de-puppet.
The DARIAH-DE and TextGrid Repository module (dhrep) is contained in
GitHub https://github.com/DARIAH-DE/puppetmodule-dhrep.

9.1.1 Monitoring

• Icinga probes for DARIAH-DE services https://icinga.de.dariah.
eu/icinga

• Metrics for Sever specific monitoring https://metrics.gwdg.de

9.1.2 Release Management

10 Code quality level for RDD

10.1 Code Reviews

We want to ensure code review for all major commits, in gitflow for every-
thing that is subject to be merged into develop.

For projects with more than one developer in the team it is preferred
to have code reviews within the team, in other cases your friendly RDD
developer team is on your side.

The main idea is to invite all developers to a MR, at least 2 approvals
needed for MR taking place. This way everybody gets the chance to have a
look at other people’s code.

13

https://nexus.gwdg.de
https://wiki.de.dariah.eu/display/FEAD/ci.de.dariah.eu
https://ci.de.dariah.eu/aptly
https://gitlab.gwdg.de/dariah-de-puppet
https://github.com/DARIAH-DE/puppetmodule-dhrep
https://icinga.de.dariah.eu/icinga
https://icinga.de.dariah.eu/icinga
https://metrics.gwdg.de

10.1.1 Sample Workflow: Code Reviews in SADE

1. A developer decides to work on a feature. She commits her changes
to a separate feature branch. After some time she finishes the feature
and wants it to be integrated in the development branch.

2. The developer creates a merge request and assigns everybody she sees
fit to properly review her code.

3. To avoid diffusion of responsibility, she also assigns one of the chosen
assignees as MUST. This means that this person has to approve the
MR, otherwise the merge cannot be done. Although GitLab sends
notifications to everybody who is newly assigned to a MR, she should
notify the MUST assignee personally (in case he or she doesn’t notice
the mail sent by GitLab).

4. The MUST assignee reviews the changes according to style, variable
naming, understandability, documentation provided, functionality, etc.
If everything is to his or her liking, he or she approves the MR. The
other assignees are free to review the code as well.Note:MRs without
docs should not be accepted.

5. After the MR has been (dis)approved, the assignee removes his- or
herself from the list of assignees. The MUST assignee informs the
developer over the review being finished.

6. The developer merges her changes into the development branch.

10.2 Proof of Concept

When preparing a proof of concept that is always labeled poc, a code review
is not necessary.

11 Intellectual Property

11.1 Licensing

• clarify software license before programming

• add license to code header

Best practice is to maintain a file listing all third-party packages that
are part of the software. This list should hold the following metadata and
SHOULD be prepared like the table below, always in alphanumeric order.

name	license	origin
foo	barware	github.com/foo/bar

14

Maybe the license-maven plugin will help you.

11.2 CESSDA’s Software Maturity Levels in RDD (CA2)

MUST MUST be SML5, which is defined as follows:

There are multiple statements embedded into the software pro-
duct describing unrestricted rights and any conditions for use,
including commercial and non-commercial use, and the recom-
mended citation. The list of developers is embedded in the source
code of the product, in the documentation, and in the expression
of the software upon execution. The intellectual property rights
statements are expressed in legal language, machine-readable co-
de, and in concise statements in language that can be understood
by laypersons, such as a pre-written, recognisable license.

Actions to Be Taken in RDD

• see rdd-technical-reference for choosing the license

– source code: use OSI approved licenses? (see https://opensource.org/licenses)
(++TODO discuss in fe-develop++) (how to chose a license?:
http://freesoftwaremagazine.com/articles/choosing_and_using_free_licenses_software_hardware_and_aesthetic_works/fig_choosing_license.jpg)

∗ assets: CC0? CC-BY-SA? (++TODO discuss in fe-develop++)

• we reach SML5 by providing a license file on root level containing
the license text (GPL wants its license text in a file called COPY-
ING [see https://www.gnu.org/licenses/gpl-howto.de.html] other li-
censes use LICENSE)

• if the license text is not contained in the license file, we provide the full
license text in another file (++TODO++) (https://softdev4research.github.io/4OSS-
lesson/03-use-license/index.html#add-a-licence-file-to-a-repository)

• in the source code header the license statement is added to every file.
GPL example:

This file is part of FOOBAR.

FOOBAR is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FOOBAR is distributed in the hope that it will be useful,

15

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FOOBAR. If not, see <https://www.gnu.org/licenses/>.

• the names of all contributed developers are stored in a contributors
file on root level (every user that has committed in the repository)

• in the source code the contributors are added to each class/method/function/file/etcpp

• “and in the expression of the software upon execution“ – if applicable

12 CESSDA – Decisions

12.1 CA3: Extensibility

MUST be SML3:
„Use is possible by most users: Future extensibility is designed into the

system for a moderate range of use cases. The procedures for extending
the software are defined, whether by source code modification or through
the provision of some type of extension functionality (e.g., callback hooks
or scripting capabilities). Where source code modification is part of the
extension plan, the software is well-structured, has a moderate to high level
of cohesion, and has configuration elements clearly separated from logic and
display elements.“

Actions to Be Taken in RDD: - Future extensibility is designed into
the system - on RDD developer level - source code modification –> software
is well-structured - provision of some type of extension functionality –>
use of frameworks such as templating engines and localization frameworks
- configuration elements clearly separated from logic and display elements -
use SADE as example project

12.2 CA4: Modularity

MUST be SML3:
„Use is possible by most users: There is evidence that the architecture is

open, with full structuring into individual components that provide functi-
ons or services to outside entities (i.e., open architecture); internal functions
or services documented, but not consistently; modules have been created for
generic functions, but modules have not been created for all of the speci-
fied functions; code within each module contains many independent logical
paths.“

SHOULD be SML5:

16

„Demonstrable usability: It is evident that all functions and data are
encapsulated into objects or accessible through web service interfaces. There
is consistent error handling with meaningful messages and advice, and use
of generic extensions to program languages for stronger type checking and
compilation-time error checking. Services are available externally and code
within each module contains few independent logical paths.“

Actions to Be Taken in RDD: - we NEED consistent error handling
with meaningful messages and advice - if specific errors can occur –> create
explicit errors - return and input types must be defined if language allows
types - think of possible reuse of internal methods –> make them externally
available - one module serves one purpose

12.3 CA6: Portability

(target platform: e.g. Docker container)
MUST BE SML5:
„Demonstrable usability: The software is completely portable to the tar-

get platform. In theory at least, the software will run on the target platform
provided it is packaged/containerised.“

Actions to Be Taken in RDD: - examples for target platforms: Text-
GridLab (Windows, Linux, Mac OS), Java Web Services (Web Application
Server: Tomcat, etcpp), SADE (eXistDB, Linux, Windows), DiscussData-
Django-App (jeder Host, für den Docker verfügbar ist)

++ Michelle möchte, dass wir mehr über Docker sprechen! ++

12.4 CA7: Standards Compliance

MUST BE SML3:
„Use is possible by most users: The software and software development

process comply with open, recognised or proprietary standards, but there is
incomplete verification of compliance. Compliance to recognised standards
has be tested but this may not be for all components. There is documented
evidence of standards being used, but not of the verification of components.“

Actions to Be Taken in RDD: - coding standards: code style, git
(commit hooks), gitflow/gitlabflow, (semantic) versioning - software stan-
dards: documentation (JavaDoc, OpenAPI, etcpp), data and metadata for-
mats, APIs (REST, SOAP, OAI-PMH, etcpp), license - CI standards: release
workflow (?), deployment

12.5 CA8: Support

MUST BE SML1: Actions to Be Taken in RDD: - an organizational
e-mail-adress must be provided with the readme and in a convenient view,
e.g. imprint/help/info etc.

17

SHOULD BE SML3: Actions to Be Taken in RDD: - provide sup-
port “near” the source code (discussable) - by any means, provide it in one
location - regular and planned releases

12.6 CA9: Verification and Testing

Actions to Be Taken in RDD: - CESSDAs definitions seems a bit unclear
to us - without referencing the SMLs we link our test chapter to CESSDAs
document

12.7 CA10: Security

MUST BE SML2:
Actions to Be Taken in RDD: - every developer must have had a

basic security training
SHOULD BE SML5:
Actions to Be Taken in RDD: - address security in every step of

development (design, implementation, testing and verification, release)
TODO: - mit AL über Training für alle Developer sprechen - An-

forderungen an Softwaresicherheit formulieren - Training erarbeiten (mit
Security-Issue-Liste beginnen)

12.8 CA11: Internationalisation and Localisation

MUST BE SML1,5
Actions to Be Taken in RDD: - locale awareness is a high requirement

for software with a monolingual target audience but you must provide it in
english (and/or the target language) at least

SHOULD BE SML3
Actions to Be Taken in RDD: - if applicable, i18n and l10n frame-

works should be used
nice to read: https://bridge360blog.com/2011/11/25/software-design-considerations-

for-internationalization-and-localization/

12.9 CA12: Authentication and Authorisation

MUST BE SML2 SHOULD BE SML4
In this case we cannot give a general recommendation since the way

authentication and authorisation is implemented inherently depends on the
software’s functionality. Instead of developing an own solution rely on DARIAH’s
AAI whenever possible.

Actions to Be Taken in RDD: - never share passwords - use Shibbo-
leth whenever possible and reasonable

18

13 Retirement of Software
• clarify if software is no longer supported

14 Helpful Links and References
• EURISE-network technical-reference:

https://github.com/eurise-network/technical-reference

• DHTech – An international grass-roots community of Digital Huma-
nities software engineers:
https://dh-tech.github.io

• The Software Sustainability Institute, Guidelines and Publications:
https://www.software.ac.uk

• The Joel Test: 12 Steps to Better Code:
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code

• Software Quality Guidelines:
https://github.com/CLARIAH/software-quality-guidelines

• Software Testing Levels:
http://softwaretestingfundamentals.com/software-testing-levels

• Netherlands eScience Center Guide
https://guide.esciencecenter.nl

19

https://github.com/eurise-network/technical-reference
https://dh-tech.github.io
https://www.software.ac.uk
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://github.com/CLARIAH/software-quality-guidelines
http://softwaretestingfundamentals.com/software-testing-levels
https://guide.esciencecenter.nl

	About This Document
	Explanatory Notes
	Style Guides
	General
	For Specific Programming Languages

	Documentation
	Doc Sprints
	General Notions about Documentation
	Developer Documentation
	Software Architecture
	API Documentation
	CESSDA's Software Maturity Levels in RDD (CA1.3)

	Admin Documentation
	CESSDA's Software Maturity Levels in RDD (CA1.2)

	Server Documentation
	User Documentation
	CESSDA's Software Maturity Levels in RDD (CA1.1)

	Version Control
	Bug Tracking
	Software Tests
	Building Code and Continuous Integration
	Building Code
	Packaging
	CESSDA's Software Maturity Levels in RDD (CA5)

	Continuous Integration
	Sample Configuration of the GitLab Runner
	Sample Configuration of the Jenkins CI (Multibranch Pipelines)

	Deployment and Maintenance
	Puppet
	Monitoring
	Release Management

	Code quality level for RDD
	Code Reviews
	Sample Workflow: Code Reviews in SADE

	Proof of Concept

	Intellectual Property
	Licensing
	CESSDA's Software Maturity Levels in RDD (CA2)

	CESSDA – Decisions
	CA3: Extensibility
	CA4: Modularity
	CA6: Portability
	CA7: Standards Compliance
	CA8: Support
	CA9: Verification and Testing
	CA10: Security
	CA11: Internationalisation and Localisation
	CA12: Authentication and Authorisation

	Retirement of Software
	Helpful Links and References

