
SUB RDD Technical Reference

9. Oktober 2019

<https://github.com/subugoe/rdd-technical-reference>

1

Table of Contents
1 About this Document 3

2 Style Guides 3
2.1 General . 3
2.2 Specific for Programming Languages 3

3 Is Your Software Fully Documented? 5
3.1 Docs Sprints . 5
3.2 General . 5
3.3 Developer Documentation . 6

3.3.1 Architecture of the Software 6
3.3.2 API Documentation 6

3.4 Admin Documentation . 6
3.5 User Documentation . 6

4 Which version control do you use? You do use version con-
trol, do you? 7

5 Do you track your bugs properly? 7

6 Do you test your software? 8

7 Building Code and Continuous Integration 8
7.1 Building Code . 8
7.2 Continuous Integration . 9

7.2.1 Sample configuration of the GitLab Runner 9
7.2.2 Sample configuration of the Jenkins CI (Multibranch

Pipelines) . 9

8 Deployment and maintenance 10
8.1 Puppet . 10

8.1.1 Monitoring . 10
8.1.2 Release Management 10

9 Code quality level for RDD 10
9.1 Code review . 10

9.1.1 Proof of concept . 10

10 Licensing 10

11 Retirement of software 11

12 Helpful links and references 11

2

1 About this Document
Author: Software Quality Working Group

Purpose: This guideline should help you getting started a new software
development project (or improving an existing one!) in the Research and
Development Department of the Göttingen State and University Library.

Our goal is to establish better software quality by following standards the
developer team has mutually agreed upon. Roughly basing on the EURISE
Network Technical Reference, these standards are discussed, worked out,
and decided in the Software Quality Working Group, which meets biweekly
on Tuesdays at 13:00-14:00. However, they aren’t cast in stone, so in case
you have a good idea for a better standard, feel free to contribute!

Status: This document is a living document and will be extended as soon
as the Software Quality Working Group has agreed upon a new standard
for software projects in RDD. TODOs and addenda of this document are
maintained here.

2 Style Guides

2.1 General

The basic definitions are given by our EditorConfig file, .editorconfig,
i.e. Unix line breaks and 2 space indentation.

2.2 Specific for Programming Languages

For the more prominent programming languages we have formatting and
general style guides we ask you to follow:

• Java: The Java style guide can be found here. It’s based on the Google
style guide for Java with some minor RDD specific settings. You can
configure Eclipse to use it automatically at Eclipse > Preferences >
Java > Code Style > Formatter. Just load the RDD Eclipse Java
Google Style in the formatter preferences and use it in your RDD
projects.

• JavaScript: For JS we use the Airbnb JavaScript Style Guide.

• HTML/CSS: For HTML/CSS we agreed upon the Google HTML/CSS
Style Guide.

• XQuery: We use the xqdoc style guide with the following addenda:

3

https://eurise-network.github.io/
https://eurise-network.github.io/
https://github.com/subugoe/rdd-technical-reference/issues/
http://editorconfig.org/
./styles/rdd-eclipse-java-google-style.xml
https://github.com/google/styleguide
https://github.com/google/styleguide
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://github.com/airbnb/javascript
https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html
http://xqdoc.org/xquery-style.pdf

– use double quotes instead of single quotes (for easy escaping)
– use four spaces for a TAB (because eXide switching the prefe-

rences in eXide’s setting isn’t permanent)

• XSLT: Since there is no official style guide for XSLT, we decided to
write our own, resulting from common best practices and own experi-
ences within the department.

• Python: For Python PEP 8 should be used, Django has a style guide
based on PEP-8 with some exceptions: Django-Styleguide. There are
linters and tools like flake-8 and pep-8 available as support.

• SPARQL: For SPARQL there is not really any official style guide and
there is no possibility to simply include any code style automatically
using a code style file. We just collect some advice how to format and
use SPARQL code.

– declaration of variables should start with a ? (and not with a $).
– opening parenthesis { should be at the end of the line. Closing

parenthesis in a separate line. Example:

SELECT * WHERE {
?s ?p ?o .

} LIMIT 10

‘” - group concatenations in SELECT command should be in seperate
lines. ‘”

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX dct: <http://purl.org/dc/terms/>

SELECT DISTINCT
(group_concat(distinct ?conceptName;separator="; ") as ?conceptNames)
(group_concat(distinct ?conceptUri;separator="; ") as ?conceptUris)
(group_concat(distinct ?next;separator="; ") as ?nexts)
(group_concat(distinct ?def;separator="; ") as ?defs)

WHERE {
<’ + uri + ’> skos:narrower ?conceptUri.
?conceptUri skos:prefLabel ?conceptName.

OPTIONAL {?conceptUri skos:narrower ?next.}
OPTIONAL {?conceptUri skos:definition ?def.}

FILTER(LANG(?conceptName) = "" || LANGMATCHES(LANG(?conceptName), "en"))
} GROUP BY ?conceptUri

4

https://github.com/subugoe/rdd-technical-reference/tree/master/style-guides/FE-XSLT.pdf
https://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://pypi.org/project/flake8/
https://pypi.org/project/pep8/

3 Is Your Software Fully Documented?

3.1 Docs Sprints

To ensure the best documentation of our code we can we meet on a weekly
base for a code sprint to document everything we have coded throughout the
week and haven’t been able to document properly yet. The meeting takes
place in the meeting room at 1pm. Cookies may be provided.

3.2 General

• don’t document a language’s specifics, e.g. operators

• best use language structure to document

• write the best documentation you can

• documentation and variable language is American English

• docs should be as close to the code as possible

• every code repository must have

– a README.md file that contains

∗ link to original repository (if the software is forked or other-
wise based on preexisting software)

∗ short introduction on what the repository is about
∗ a guide how to get the software running (if makes sense)
∗ link to demo instance
∗ example or demo installation
∗ link to license file
∗ contribution guide
∗ link to style guide
∗ link to bug tracker/project management system
∗ known issues
∗ badges to CI status

A good example can be found here.

– a LICENCE file

5

https://gist.github.com/PurpleBooth/109311bb0361f32d87a2

3.3 Developer Documentation

3.3.1 Architecture of the Software

Each software project should be documented using an architecture diagram
that helps understanding its basic functionality (even though using tools to
generate diagrams such as UML class diagrams doesn’t seem to be possible
in every case).

Examples:

• Generating call graphs in eXist-db

Call diagrams can be useful to follow code and service calls and should
be existing for every API method.

3.3.2 API Documentation

• The docs should comprise used parameters, author and @since anno-
tations

• Example for Java

• Links to callers must not be listed in the documentation, because this
info will be deprecated soon. It is strongly recommended to use call
stacks of tools like Eclipse (Java) and/or Call Graph Module (SADE).

• Document REST-APIs using openAPI if possible. OpenAPI docs should
be located at /doc/api on servers.

3.4 Admin Documentation

• The docs should comprise how to install the software, how to run
and/or restart it, how to test the installation, . . .

• Server documentation: This type of documentation is provided and
maintained in our wiki space. We have a template encompassing all
information necessary: To create a wiki page for a new server navigate
to the FE Server list, select “. . . ” right beside the “Create” button and
search for “FE-Server”.

3.5 User Documentation

• how to use the software and APIs, FAQs, walkthroughs, . . .

• guided tour (Bootstrap Tour) as user documentation

– for SADE portal usage (such as Fontane, BdN, Architrave)
– for complex Digital Editions

• screencasts

6

https://gitlab.gwdg.de/SADE/SADE/tree/develop/modules/callgraph
https://lab.sub.uni-goettingen.de/self-updating-docs.html
https://github.com/OAI/OpenAPI-Specification

4 Which version control do you use? You do use
version control, do you?

We exclusively use git in RDD. Please see https://git-scm.com/doc for
information on how it works.

We recommend to use the Git flow Workflow (also consult the Cheat
Sheet). For git flow it is safest to protect your master and develop branch
on server side to avoid accidental pushes into these branches. All speci-
fic branches working on an issue described in a bug tracker may utilize
the following naming scheme: [track]/#[ISSUENUMBER]-[KEYWORD], e.g.
bugfix/#12-flux-capacitor.

A GitHub workflow used in DARIAH-DE and related services is descri-
bed in the DARIAH-DE Wiki.

It is also recommended to automatically close issues via commit message;
How this works exactly depends on the Git repository server. Issues can also
be referenced across repositories (cf. link).

We use the following Git servers at the moment in RDD:

• Projects (GWDG) –> https://projects.gwdg.de

• GitLab (GWDG) –> https://gitlab.gwdg.de

• github.org –> https://github.com/subugoe

Which one is suitable for you depends on:

• the project you are working on

• existing code

• whether or not you want to use CI/CD or GitLab Runners

• . . .

We have got an RDD team on GitHub. Feel free to join us!
Consider mirroring of repos for project visibility (e.g. mirror GitLab/Projects

code to Github?)

5 Do you track your bugs properly?

A bug tracking system is obligatory! Please use the respective bug tracking
system of your repo and/or project management solution (please see chapter
version control)!

7

https://git-scm.com/doc
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://danielkummer.github.io/git-flow-cheatsheet
https://danielkummer.github.io/git-flow-cheatsheet
https://wiki.de.dariah.eu/display/DARIAH3/DARIAH-DE+Release+Management#DARIAH-DEReleaseManagement-Beispielmitdevelop-undmaster-Branch(Gitflow)
https://help.github.com/articles/autolinked-references-and-urls/#commit-shas
https://projects.gwdg.de
https://gitlab.gwdg.de
https://github.com/subugoe
https://github.com/orgs/subugoe/teams/fe

6 Do you test your software?

We aim to have a test coverage of 100% (except for getter and setter me-
thods). This is understood on a component level, which means that every
method should have at least one test. Whether you achieve this by Test
Driven Development (TDD) or not is specific to your preferred way to work.

Please keep in mind not only to write a test for each of your functions
but also to consider all possible outcomes. It is e.g. not sufficient to test if a
function creates a file if the written content depends on variables etc.

Examples for writing tests in different programming languages are:

• XQuery

7 Building Code and Continuous Integration

7.1 Building Code

Ideally we use build tools to conveniently get a software running. The reason
for using a build tool is to be able to build and/or test a code project with
one command (after checking out). Another reason is to include dependency
management.

Build tools we are using at the moment

• bash scripting: (BdNPrint, FontanePrint)

• eXist: Ant (SADE)

• Java: Maven (TextGrid)

• JavaScript:

• bower (DARIAH-DE GeoBrowser, tgForms)

• cake (tgForms)

• NPM (DARIAH-DE Publikator, tgForms)

• rake (DARIAH-DE GeoBrowser)

• Phython:

• make (Sphinx documentation)

• PIP (DiscussData)

• Ruby: bundler (DARIAH status page)

8

https://gist.github.com/joewiz/fa32be80749a69fcb8da

Build tools we want to evaluate

• gradle

7.2 Continuous Integration

We want to use CI as soon as possible in new projects.
The workflows we are using currently in Jenkins and GitLab Runner are:

• Code building

• Testing

• Code analyzer (Sonar)

• Packaging (JAR, WAR, DEB, XAR)

• Distribution (Nexus, APTLY repo, eXist repo)

• Release Management (via GitLab Environments and gitflow)

7.2.1 Sample configuration of the GitLab Runner

The following example illustrates how the GitLab Runner is used in SADE.
The full and documented version of this file can be viewed here.

7.2.2 Sample configuration of the Jenkins CI (Multibranch Pi-
pelines)

• On commit and push to the https://projects.gwdg.de gitolite repo
(such as https://projects.gwdg.de/projects/tg-crud/repository)
Jenkins on ci.de.dariah.eu is notified (see projects’ gitolite configura-
tion)

• Jenkins then does a checkout and build of configured branches (see
Jenkins’ project’s multibranch pipeline configuration such as https:
//ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services.

• Stage Preparation: Prepare things

• Stage Build: Build, JAR, WAR, and DEB packages from source code,
deploy JAR and WAR packages to the Nexus repo. For further infor-
mation on Nexus cf. ci’s server documentation. Jenkins is configured
to deploy JARs and WARs via Maven and a Nexus deploy-account.

• Stage Publish: Publish DEB packages to the DARIAH-DE Aptly Repo.
Jenkins is using a shared library of scripts and publishing is devided
into four conditionals: TG version, DH version, SNAPSHOT version,
or RELEASE version due to given version suffixes!

9

https://gitlab.gwdg.de/SADE/SADE/blob/develop/.gitlab-ci.yml
https://projects.gwdg.de
https://projects.gwdg.de/projects/tg-crud/repository
https://ci.de.dariah.eu/jenkins
https://ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services
https://ci.de.dariah.eu/jenkins/job/DARIAH-DE-CRUD-Services
https://nexus.gwdg.de
https://wiki.de.dariah.eu/display/FEAD/ci.de.dariah.eu
https://ci.de.dariah.eu/aptly

8 Deployment and maintenance

8.1 Puppet

For server configuration and setup we are using puppet for the most ser-
vers. The main puppet code is contained in GitLab https://gitlab.gwdg.
de/dariah-de-puppet. The DARIAH-DE and TextGrid Repository module
(dhrep) is contained in Github https://github.com/DARIAH-DE/puppetmodule-dhrep.

8.1.1 Monitoring

• Icinga probes for DARIAH-DE services https://icinga.de.dariah.
eu/icinga

• Metrics for Sever specific monitoring https://metrics.gwdg.de

8.1.2 Release Management

9 Code quality level for RDD

9.1 Code review

We want to ensure code review for all major commits, in gitflow for every-
thing that is subject to be merged into develop.

For projects with more than one developer in the team it is preferred
to have code reviews within the team, in other cases your friendly RDD
developer team is on your side.

• idea: invite all developers to a MR, at least 2 approvals needed for
MR taking place. this way, everbody gets the chance to have a look at
other people’s code

9.1.1 Proof of concept

When preparing a proof of concept that is always labeled poc, a code review
is not necessary.

10 Licensing

• clarify software license before programming

• add license to code header

Best practice is to maintain a file listing all third-party packages that
are part of the software. This list should hold the following metadata and
SHOULD be prepared like the table below, always in alphanumeric order.

10

https://gitlab.gwdg.de/dariah-de-puppet
https://gitlab.gwdg.de/dariah-de-puppet
https://github.com/DARIAH-DE/puppetmodule-dhrep
https://icinga.de.dariah.eu/icinga
https://icinga.de.dariah.eu/icinga
https://metrics.gwdg.de

name	license	origin
foo	barware	github.com/foo/bar

Maybe the license-maven plugin will help you.

11 Retirement of software
• clarify if software is no longer supported

12 Helpful links and references
• eurise-network technical-reference: https://github.com/eurise-network/

technical-reference

• DHTech – An international grass-roots community of Digital Huma-
nities software engineers: https://dh-tech.github.io

• The Software Sustainability Institute, Guidelines and Publications:
https://www.software.ac.uk

• The Joel Test: 12 Steps to Better Code: https://www.joelonsoftware.
com/2000/08/09/the-joel-test-12-steps-to-better-code

• Software Quality Guidelines: https://github.com/CLARIAH/software-quality-guidelines

• Software Testing Levels: http://softwaretestingfundamentals.com/
software-testing-levels

• Netherlands eScience Center Guide https://guide.esciencecenter.
nl

11

https://github.com/eurise-network/technical-reference
https://github.com/eurise-network/technical-reference
https://dh-tech.github.io
https://www.software.ac.uk
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://github.com/CLARIAH/software-quality-guidelines
http://softwaretestingfundamentals.com/software-testing-levels
http://softwaretestingfundamentals.com/software-testing-levels
https://guide.esciencecenter.nl
https://guide.esciencecenter.nl

	About this Document
	Style Guides
	General
	Specific for Programming Languages

	Is Your Software Fully Documented?
	Docs Sprints
	General
	Developer Documentation
	Architecture of the Software
	API Documentation

	Admin Documentation
	User Documentation

	Which version control do you use? You do use version control, do you?
	Do you track your bugs properly?
	Do you test your software?
	Building Code and Continuous Integration
	Building Code
	Continuous Integration
	Sample configuration of the GitLab Runner
	Sample configuration of the Jenkins CI (Multibranch Pipelines)

	Deployment and maintenance
	Puppet
	Monitoring
	Release Management

	Code quality level for RDD
	Code review
	Proof of concept

	Licensing
	Retirement of software
	Helpful links and references

