21. Mai 2019 <https://github.com/subugoe/rdd-technical-reference>

Table of Contents

1 SUB RDD Technical Referencel 3
L1 Guidelines| 3
11 Generall L. 3
[1.1.2 Specific for programming languagues| 3
1.2 Is your sottware fully documented?| 4
1.2.1 Generalissuesl., 4
[1.2.2 Developer documentation| 5
(1.2.3 Admin Documentationl 6
[1.2.4 User Documentationl 6

|1.3 Which version control do you use?” You do use version control,
| dovyou?| 6
1.4 Are you tracking your bugs properly? 7
[1.5 What is your test coverage?| 7
[1.6 Building code and continuous integration| 7
[1.6.1 Buildingcode| o000 7
[1.6.2 Continuous integration|. 8
[1.7 Deployment and maintenance] L. 10
2 Code quality level for RDD)] 10
3 icencing; 10
4__Retirement of softwarel 11
[Helpful links and references| 11

1 SUB RDD Technical Reference

Author: Software Quality Working Group

Purpose: This guideline should help you getting started a new software
development project (or improving an existing one!) in the Research and
Development Department of the Gottingen State and University Library.

Our goal is to establish better software quality by following standards the
developer team has mutually agreed upon. Roughly basing on the DARIAH
Technical Reference, these standards are discussed, worked out, and decided
in the Software Quality Working Group, which meets biweekly on Tuesdays
at 12:30-13:30. However, they aren’t cast in stone, so in case you have a
good idea for a better standard, feel free to contribute!

Status: This document is a living document and will be extended as soon
as the Software Quality Working Group has agreed upon a new standard
for software projects in RDD.

1.1 Guidelines

Do you stick to our code style guides?

1.1.1 General

The basic definitions are given by our EditorConfig, i.e. unix line breaks and
2 space indentation.

Unfortunately, not all editors support EditorConfig. In case you use eXi-
de, the IDE that comes with exist-db, you can set 2 space indentation as
default by editing /db/apps/eXide/src/preferences. js.

1.1.2 Specific for programming languagues

For the more prominent programming languages we have formatting and
general style guides we ask you to follow:

e Java: The Java style guide can be found here. It’s based on the|Google
style guide for Java with some minor RDD specific setting. You can
configure Eclipse to use it automatically at FEclipse > Preferences >
Java > Code Style > Formatter. Just load the RDD Eclipse Java
Google Style in the formatter preferences and use it in your RDD
projects.

e JavaScript: For JS we use the |Airbnb JavaScript Style Guide.

e HTML /CSS: For HTML/CSS we agreed upon the Google HTML/CSS
Style Guide.

e XQuery: We use the xqdoc style guide with the following addenda:

https://dariah-eric.github.io/technical-reference/
https://dariah-eric.github.io/technical-reference/
http://editorconfig.org/
http://editorconfig.org/
http://exist-db.org/
./styles/rdd-eclipse-java-google-style.xml
https://github.com/google/styleguide
https://github.com/google/styleguide
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://github.com/airbnb/javascript
https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html
http://xqdoc.org/xquery-style.pdf

— use double quotes instead of single quotes (for easy escaping)

— use four spaces for a TAB (because eXide makes it so)

e XSLT: Since there is no official style guide for XSLT, we decided to
write our own, resulting from common best practices and own experi-
ences within the department.

e SPARQL: For SPARQL there is not really any official style guide and
there is no possibility to simply include any code style automatically

using a code style file. We just collect some advices how to format and
use SPARQL code.

— declaration of variables should start with a ? (and not with a $).

— opening parenthesis { should be at the end of the line. Closing
parenthesis in a separate line.

SELECT * WHERE {
?s 7p 7o .
} LIMIT 10

*” - group concatenations in SELECT command should be in seperate
lines. *”

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX dct: <http://purl.org/dc/terms/>

SELECT DISTINCT

(group_concat(distinct ?conceptName;separator="; ") as 7conceptNames)
(group_concat(distinct 7conceptUri;separator="; ") as 7conceptUris)
(group_concat(distinct 7next;separator="; ") as 7nexts)
(group_concat(distinct 7def;separator="; ") as 7defs)

WHERE {

<’ 4+ uri + ’> skos:narrower 7conceptUri.
?conceptUri skos:preflabel 7conceptName.
OPTIONAL{?conceptUri skos:narrower 7next.}
OPTIONAL { ?conceptUri skos:definition 7def.}
FILTER(LANG(?conceptName) = "" || LANGMATCHES(LANG(?conceptName), "en"))
}GROUP BY 7conceptUri

1.2 Is your software fully documented?
1.2.1 General issues

e don’t document computer language’s interna

https://github.com/subugoe/rdd-technical-reference/tree/master/style-guides/FE-XSLT.pdf

best use language structure to document

write the best documentation you can

documentation and variable language is American English

should be as code-near as possible
e every code repo must have

— a README.md file that contains

* link to original repository
* short introduction
*

link to demo instance

*

example or demo installation

% link to licence file

% contribution guide

* link to style guide

* link to bugtracker/project managemenmt system
* known issues
*

badges to ci status
A good example can be found here.

— a LICENCE file

1.2.2 Developer documentation

Architecture of the software Each software project should be docu-
mented using an architecture diagram that helps understanding its basic
functionality (using tools to generate diagrams such as UML class diagrams
seems not to be possible in every case).

Examples:

e Generating call graphs in eXist-db

Call diagrams can be useful to follow code and service calls and should
be existing for every API method.

API documentation
e Used parameters, author and since annotations

e Example for Java: https://lab.sub.uni-goettingen.de/self-updating-docs.
html

https://gist.github.com/PurpleBooth/109311bb0361f32d87a2
https://gitlab.gwdg.de/SADE/SADE/tree/develop/modules/callgraph
https://lab.sub.uni-goettingen.de/self-updating-docs.html
https://lab.sub.uni-goettingen.de/self-updating-docs.html

e Links to callers must not be listed in the documentation, because this
info will be deprecated soon. Strongly recommended is using call stacks
of tools like Eclipse (Java) and/or Call Graph Module (SADE).

e We do meet and write documentation together regularly (documenta-
tion sprint) every friday from 1 PM in the RDD meeting room. WE
NEED COOKIES!

e Document REST-APIs using openAPI/if possible. OpenAPI docs should
be located at /doc/api on servers.

1.2.3 Admin Documentation

e how to install the software, how to run and/or restart it, how to test
the installation, ...

e server documentation

1.2.4 User Documentation
e how to use the software and APIs, FAQs, walkthroughs, ...

e guided tour (Bootstrap Tour) as user documentation

— for SADE portal usage (such as Fontane, BAN, Architrave)
— for complex Digital Editions

® screencasts

1.3 Which version control do you use? You do use version
control, do you?

We are using GIT in RDD! Nothing else! How it works, please see https:
//git-scm.com/doc.

We recommend to use Gitflow Workflow: https://www.atlassian.com/
git/tutorials/comparing-workflows/gitflow-workflow, Cheat Sheet:
https://danielkummer.github.io/git-flow-cheatsheet), if possible on
server side: use protection of the develop and master branches. All spe-
cific branches working on an issue descibed in a bug tracker may utilize
the following naming scheme: [track]/#[ISSUENUMBER]-[KEYWORD], e.g.
bugfix/#12-flux-capacitor.

A github workflow used in DARIAH-DE and related services is des-
cribed in the DARIAH-DE Wiki: https://wiki.de.dariah.eu/display/
DARIAH3/DARIAH-DE+Release+Management#DARIAH-DEReleaseManagement-Beispielmitdeve

Automatically closing issues via commit message depends on the Git
repository server. Issues can also be referenced across repositories (cf. link).

Which repo you are using depends on:

https://github.com/OAI/OpenAPI-Specification
https://git-scm.com/doc
https://git-scm.com/doc
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://danielkummer.github.io/git-flow-cheatsheet
https://wiki.de.dariah.eu/display/DARIAH3/DARIAH-DE+Release+Management#DARIAH-DEReleaseManagement-Beispielmitdevelop-undmaster-Branch(Gitflow)
https://wiki.de.dariah.eu/display/DARIAH3/DARIAH-DE+Release+Management#DARIAH-DEReleaseManagement-Beispielmitdevelop-undmaster-Branch(Gitflow)
https://help.github.com/articles/autolinked-references-and-urls/#commit-shas

e the project
e existing code
e using Gitlab Runners

L
We use the following at the moment in RDD:

e Projects (GWDG) —> https://projects.gudg.de
e Gitlab (GWDG) —> https://gitlab.gwdg.de

e github.org —> https://github.com/subugoe

We have got an RDD team on Github: https://github.com/orgs/
subugoe/teams/fe

Consider mirroring of repos for project visibility (e.g. mirror Gitlab/Projects
code to Github?)

1.4 Are you tracking your bugs properly?

A bug tracking system is obligatory! Please use the respective bug tracking
system of your repo and/or project management solution (please see chapter
version control)!

1.5 What is your test coverage?

We aim to have a test coverage of 100% (except for getter and setter me-
thods). Whether you achive this by Test Driven Development (TDD) or not
is specific to your preferred way to work.

Please keep in mind not only to write a test for each of your functions
but also to consider all possible outcomes. It is e.g. not sufficient to test if a
function creates a file if the written content depends on variables etc.

Examples for different programming languages are:

e XQuery:https://gist.github.com/joewiz/fa32be80749a69fcb8da

1.6 Building code and continuous integration
1.6.1 Building code

The reason for using a build tool is to be able to build and/or test a code
project with one command (after checking out). Another reason is to include
dependency management.

https://projects.gwdg.de
https://gitlab.gwdg.de
https://github.com/subugoe
https://github.com/orgs/subugoe/teams/fe
https://github.com/orgs/subugoe/teams/fe
https://gist.github.com/joewiz/fa32be80749a69fcb8da

Build tools we are using at the moment
e bash scripting: (BdN Print, Fontane Print)
o eXist: Ant (SADE)

e Java: Maven (TextGrid)

e JavaScript:

e bower (DARIAH-DE GeoBrowser, tgForms)
e cake (tgForms)

e NPM (DARIAH-DE Publikator, tgForms)
e rake (DARIAH-DE GeoBrowser)

e Phython:

e make (Sphinx documentation)

e PIP (DiscussData)

e Ruby: bundler (DARIAH status page)

Build tools we want to evaluate

e gradle

1.6.2 Continuous integration

We want to use CI as soon as possible in new projects.
The workflows we are using currently in Jenkins and Gitlab Runner are:

e Code building

Testing

Code analyzer (Sonar)

Packaging (JAR, WAR, DEB, XAR)

Distribution (Nexus, APTLY repo, eXist repo)

Release Management (QTODO: where to put this? gitflow?)

Sample configuration of the GitLab Runner The following example
illustrates how the GitLab Runner is used in SADE. The fully documented
version of this file can be viewed lherel

image: docker.gitlab.gwdg.de/fontane-notizbuecher/build:latest

stages:
- build
- test
- deploy

build-develop:
except:
- master
- tags
stage: build
script:
- ant test
artifacts:
paths:
- build/*.xar
- test/

build-master:
only:

- master
stage: build
script:

- cp master.build.properties local.build.properties
- ant test
artifacts:
paths:
- build/*.xar
- test/

installation:
except:
- tags
stage: test
script:
- bash test/eXist-db-*/bin/startup.sh | tee output.log &
wait for eXist to have started
- while [$(curl --head --silent http://localhost:8080 | grep -c "200 OK") == 0];
shutdown eXist

https://gitlab.gwdg.de/SADE/SADE/blob/develop/.gitlab-ci.yml

- bash test/eXist-db-*/bin/shutdown.sh
- 1s -al /tmp; mv /tmp/tests—* . || true
artifacts:

paths:

- output.log

- test/tests—*.xml

- test/eXist-db-*/webapp/WEB-INF/logs/expath-repo.log
this enables us to get information like test coverage.
reports:

junit: test/tests—*.xml

upload:
only:
- master
- develop
except:
- tags
stage: deploy
script:
- FILENAME=$(1ls build/*.xar)
- curl -u ci:${EXIST_UPLOAD_PW} -X POST -F file=Q@${FILENAME} https://ci.de.

1.7 Deployment and maintenance

e QTODO: Puppet

e @QTODO: Monitoring (such as Icinga, Metrics)

2 Code quality level for RDD
e Evaluate Software maturity levels from CESSDA: @QTODO @Qmw
e @QTODO: Code reviewing, evaluate quality level

o QTODO: Wissenschaftliche Standards fur wissenschaftliche Software?!

3 Licencing
e clarify software licence before programming
e add licence to code header

e @TODO: depends on used software libraries, project and/or funder

10

4 Retirement of software

e clarify if software is no longer supported

5 Helpful links and references

e curise-network technical-reference: https://github. com/eurise-network/
technical-reference

e DHTech — An international grass-roots community of Digital Huma-
nities software engineers: https://dh-tech.github.io

e The Software Sustainability Institute, Guidelines and Publications:
https://www.software.ac.uk

e The Joel Test: 12 Steps to Better Code: https://www. joelonsoftware.
com/2000/08/09/the-joel-test-12-steps-to-better-code

e Software Quality Guidelines: https://github.com/CLARIAH/software-quality-guidelines

o Software Testing Levels: http://softwaretestingfundamentals. con/
software-testing-levels

e Netherlands eScience Center Guide https://guide.esciencecenter.
nl

11

https://github.com/eurise-network/technical-reference
https://github.com/eurise-network/technical-reference
https://dh-tech.github.io
https://www.software.ac.uk
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://github.com/CLARIAH/software-quality-guidelines
http://softwaretestingfundamentals.com/software-testing-levels
http://softwaretestingfundamentals.com/software-testing-levels
https://guide.esciencecenter.nl
https://guide.esciencecenter.nl

	SUB RDD Technical Reference
	Guidelines
	General
	Specific for programming languagues

	Is your software fully documented?
	General issues
	Developer documentation
	Admin Documentation
	User Documentation

	Which version control do you use? You do use version control, do you?
	Are you tracking your bugs properly?
	What is your test coverage?
	Building code and continuous integration
	Building code
	Continuous integration

	Deployment and maintenance

	Code quality level for RDD
	Licencing
	Retirement of software
	Helpful links and references

