
SUB RDD Technical Reference

4. Dezember 2018

<https://github.com/subugoe/rdd-technical-reference>

1

Table of Contents
1 Purpose 3

2 Status 3

3 Guidelines 3
3.1 Do you stick to our code style guides? 3

3.1.1 General . 3
3.1.2 Specific for programming languagues 3

3.2 Is your software fully documented? 4
3.2.1 General issues . 4
3.2.2 Developer documentation 5
3.2.3 Admin Documentation 5
3.2.4 User Documentation 6

3.3 Which version control do you use? You do use version control,
do you? . 6

3.4 Are you tracking your bugs properly? 6
3.5 What is your test coverage? 6
3.6 Code building and continuous integration 7

4 Code quality level for RDD 7

5 Licencing 7

6 Requirements engineering 7

7 Helpful links and references 7

2

1 Purpose

This guideline should help you getting started a new software development
project (or improving an existing one!) in the Research and Development
Department of the Göttingen State and University Library.

Our goal is to establish better software quality by following standards the
developer team has mutually agreed upon. Roughly basing on the DARIAH
Technical Reference, these standards are discussed, worked out, and decided
in the Software Quality Working Group, which meets biweekly on Tuesdays
at 12:30-13:30. However, they aren’t cast in stone, so in case you have a
good idea for a better standard, feel free to contribute!

2 Status

This document is a living document and will be extended as soon as the Soft-
ware Quality Working Group has agreed upon a new standard for software
projects in RDD.

3 Guidelines

3.1 Do you stick to our code style guides?

3.1.1 General

The basic definitions are given by our EditorConfig, i.e. unix line breaks and
2 space indentation.

Unfortunately, not all editors support EditorConfig. In case you use eXi-
de, the IDE that comes with exist-db, you can set 2 space indentation as
default by editing /db/apps/eXide/src/preferences.js.

3.1.2 Specific for programming languagues

For the more prominent programming languages we have formatting and
general style guides we ask you to follow:

• Java: The Java style guide can be found here. It’s based on the Google
style guide for Java with some minor RDD specific setting. You can
configure Eclipse to use it automatically at Eclipse > Preferences >
Java > Code Style > Formatter. Just load the RDD Eclipse Java
Google Style in the formatter preferences and use it in your RDD
projects.

• JavaScript: For JS we use the Airbnb JavaScript Style Guide. @TO-
DO uv: How to use in editor?

3

https://dariah-eric.github.io/technical-reference/
https://dariah-eric.github.io/technical-reference/
http://editorconfig.org/
http://editorconfig.org/
http://exist-db.org/
./styles/rdd-eclipse-java-google-style.xml
https://github.com/google/styleguide
https://github.com/google/styleguide
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://raw.githubusercontent.com/subugoe/rdd-technical-reference/master/styles/rdd-eclipse-java-google-style.xml
https://github.com/airbnb/javascript

• HTML/CSS: For HTML/CSS we agreed upon the Google HTML/CSS
Style Guide. @TODO mw: How to use in editor?

• XQuery: We use the xqdoc style guide with the following addenda:

– use double quotes instead of single quotes (for easy escaping)
@TODO all: Discuss again with mg

– use four spaces for a TAB (because eXide makes it so)

• XSLT: Since there is no official style guide for XSLT, we decided to
write our own, resulting from common best practices and own experi-
ences within the department.

• SPARQL: For SPARQL there is not really any official style guide and
there is no possibility to simply include any code style automatically
using a code style file. We just collect some advices how to format and
use SPARQL code.

– declaration of variables should start with a ? (and not with a $).
– { paranthesis should be at the end of the line. @TODO mb:

Provide examples
– group concatenations in SELECT command should be in seperate

lines.

3.2 Is your software fully documented?

3.2.1 General issues

• don’t document computer language’s interna

• best use language structure to document

• write the best documentation you can

• documentation and variable language is American English

• should be as code-near as possible

• every code repo must have

– a README.md file that contains @TODO mw: provide link to
example

∗ link to original repository
∗ short introduction
∗ link to demo instance
∗ example or demo installation

4

https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html
http://xqdoc.org/xquery-style.pdf
https://github.com/subugoe/rdd-technical-reference/tree/master/style-guides/FE-XSLT.pdf

∗ link to licence file
∗ contribution guide
∗ link to style guide
∗ link to bugtracker/project managemenmt system
∗ known issues
∗ badges to ci status

– a LICENCE file

• @TODO fu: see https://wiki.de.dariah.eu/pages/viewpage.action?
pageId=64957922

• where to document the code? where is it documented in RDD?

3.2.2 Developer documentation

Architecture of the software Each software project should be docu-
mented using an architecture diagram that helps understanding its basic
functionality (using tools to generate diagrams such as UML class diagrams
seems not to be possible in every case).

Examples: - @TODO mw: Looks for XQuery architecture things https:
//github.com/vronk/SADE/tree/METS-crxq/docs - @TODO fu: Looks for
JAVA ULM things (crud?)

Call diagrams can be useful to follow code and service calls and should
be existing for every API call.

API documentation

- used parameters, author and since annotations
- @TODO fu (Java): See Dennis’ LABSUBBLOG entry <https://lab.sub.uni-goettingen.de/self-updating-docs.html>
- links to callers? who is calling this method, and when?
- @TODO mw: Test Swagger and REST API for Getty API <https://dracor.org/documentation/api/> and <https://app.swaggerhub.com/apis/swub/gdz-fulltext_api/1.0.0>

• meet and write documentation together regularly?

3.2.3 Admin Documentation

• how to install the software, how to run and/or restart it, how to test
the installation, . . .

• server documentation

5

https://wiki.de.dariah.eu/pages/viewpage.action?pageId=64957922
https://wiki.de.dariah.eu/pages/viewpage.action?pageId=64957922
https://github.com/vronk/SADE/tree/METS-crxq/docs
https://github.com/vronk/SADE/tree/METS-crxq/docs

3.2.4 User Documentation

• how to use the software and APIs, FAQs, walkthroughs, . . .

• guided tour (Bootstrap Tour) as user documentation

– for SADE portal usage (such as Fontane, BdN, Architrave)
– for complex Digital Editions

• screencasts

3.3 Which version control do you use? You do use version
control, do you?

We are using GIT in RDD! Nothing else! How it works, please see https:
//git-scm.com/doc.

We recommend to use Gitflow (<@TODO mw: Link raussuchen> and
https://danielkummer.github.io/git-flow-cheatsheet) and the pro-
tection of the develop and master branches.

Automatically closing issues via commit message depends on the Git
repository server. @TODO mw: References to other issues, etcpp.

Wihch repo you are using depends on:

• the project

• existing code

• using Gitlab Runners

• . . .

3.4 Are you tracking your bugs properly?

A bug tracking system is obligatory! Please use the respective bug tracking
system of your repo and/or project management solution (please see chapter
version control)!

@TODO mirroring of repos for project visibility!?

3.5 What is your test coverage?

We aim to have a test coverage of 100% (except for getter and setter me-
thods). Whether you achive this by Test Driven Development (TDD) or not
is specific to yout preferred way to work.

Please keep in mind not only to write a test for each of your functions
but also to consider all possible outcomes. It is e.g. not sufficient to test if a
function creates a file if the written content depends on variables etc.

Examples for different programming languages are:

• XQuery: https://gist.github.com/joewiz/fa32be80749a69fcb8da

6

https://git-scm.com/doc
https://git-scm.com/doc
https://danielkummer.github.io/git-flow-cheatsheet
https://gist.github.com/joewiz/fa32be80749a69fcb8da

3.6 Code building and continuous integration

• @TODO: Code building (such as Jenkins, Gitlab Runner)

• @TODO: Provide complete example for Jenkins and Gitlab runner!

• @TDOO: Monitoring (such as Icinga)

4 Code quality level for RDD

5 Licencing

6 Requirements engineering

7 Helpful links and references
• eurise-network technical-reference: https://github.com/eurise-network/

technical-reference

• DHTech – An international grass-roots community of Digital Huma-
nities software engineers: https://dh-tech.github.io

• The Software Sustainability Institute, Guidelines and publicartions:
https://www.software.ac.uk

• The Joel Test: 12 Steps to Better Code: https://www.joelonsoftware.
com/2000/08/09/the-joel-test-12-steps-to-better-code

• Software Quality Guidelines: https://github.com/CLARIAH/software-quality-guidelines

• Software Testing Levels: http://softwaretestingfundamentals.com/
software-testing-levels

7

https://github.com/eurise-network/technical-reference
https://github.com/eurise-network/technical-reference
https://dh-tech.github.io
https://www.software.ac.uk
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code
https://github.com/CLARIAH/software-quality-guidelines
http://softwaretestingfundamentals.com/software-testing-levels
http://softwaretestingfundamentals.com/software-testing-levels

	Purpose
	Status
	Guidelines
	Do you stick to our code style guides?
	General
	Specific for programming languagues

	Is your software fully documented?
	General issues
	Developer documentation
	Admin Documentation
	User Documentation

	Which version control do you use? You do use version control, do you?
	Are you tracking your bugs properly?
	What is your test coverage?
	Code building and continuous integration

	Code quality level for RDD
	Licencing
	Requirements engineering
	Helpful links and references

