Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
irp
Fresnel
Commits
bc06658c
Commit
bc06658c
authored
Feb 10, 2021
by
Leon Merten Lohse
Browse files
fix missing wavelength
parent
441a23a0
Changes
3
Hide whitespace changes
Inline
Side-by-side
examples/Test2d.ipynb
View file @
bc06658c
%% Cell type:code id: tags:
```
python
import
numpy
as
np
import
xraylib
as
xrl
import
matplotlib.pyplot
as
plt
import
fresnel.propagate
as
propagate
```
%% Cell type:code id: tags:
```
python
from
platform
import
python_version
print
(
python_version
())
```
%%%% Output: stream
3.8.7
%% Cell type:code id: tags:
```
python
%
matplotlib
inline
```
%% Cell type:code id: tags:
```
python
#xrl.GetCompoundDataNISTByName("Kapton Polyimide Film")
```
%% Cell type:code id: tags:
```
python
# simulation box
energy
=
12.
# keV
wavelength
=
1.2398
/
(
energy
*
1e3
)
*
1e-3
# mm
nx
=
1200
nz
=
10000
wg_radius
=
25e-6
xtot
=
10
*
wg_radius
# mm
ztot
=
0.4
# mm
# units
dx
=
xtot
/
nx
/
wavelength
dz
=
ztot
/
nz
/
wavelength
print
(
f
"dx:
{
dx
}
, dz:
{
dz
}
wavelengths"
)
```
%%%% Output: stream
dx: 2.0164542668172287, dz: 387.1592192289079 wavelengths
%% Cell type:code id: tags:
```
python
# slice thickness according to "Multislice does it all"
eps1
=
0.1
eps2
=
0.1
wl0
=
1
dz_max
=
eps2
/
eps1
**
2
*
dx
**
2
/
wl0
print
(
dz_max
)
```
%%%% Output: stream
40.66087810165406
%% Cell type:code id: tags:
```
python
# materials and geometry
density_Ge
=
xrl
.
ElementDensity
(
xrl
.
SymbolToAtomicNumber
(
'Ge'
))
density_Polyimide
=
1.42
density_Si
=
xrl
.
ElementDensity
(
xrl
.
SymbolToAtomicNumber
(
'Si'
))
n_Ge
=
xrl
.
Refractive_Index
(
'Ge'
,
energy
,
density_Ge
)
n_Si
=
xrl
.
Refractive_Index
(
'Si'
,
energy
,
density_Si
)
n_PI
=
xrl
.
Refractive_Index
(
'Kapton Polyimide Film'
,
energy
,
density_Polyimide
)
xx
=
np
.
linspace
(
-
xtot
/
2
,
xtot
/
2
,
nx
)
core
=
(
np
.
abs
(
xx
)
<
wg_radius
)
cladding
=
~
core
refractive_index
=
n_Ge
*
cladding
+
1
*
core
```
%% Cell type:code id: tags:
```
python
boundary
=
(
0
,
0
,)
u0
=
np
.
exp
(
-
xx
**
2
/
(
2
*
(
2
*
wg_radius
)
**
2
)).
astype
(
np
.
complex128
)
```
%% Cell type:code id: tags:
```
python
propagator
=
propagate
.
FDPropagator2d
(
refractive_index
,
u0
,
dz
,
dx
)
```
%% Cell type:code id: tags:
```
python
field
=
np
.
zeros
((
nz
,
nx
),
dtype
=
np
.
complex128
)
field
[
0
,...]
=
u0
for
iz
in
range
(
1
,
nz
):
boundary
=
(
0
,
0
)
field
[
iz
,
...]
=
propagator
.
step
(
refractive_index
,
boundary
)
```
%% Cell type:code id: tags:
```
python
result
=
field
.
transpose
()
fig
,
ax
=
plt
.
subplots
()
im
=
ax
.
imshow
(
np
.
abs
(
result
[:,:])
**
2
,
aspect
=
'auto'
,
clim
=
(
0
,
3
),
cmap
=
'cubehelix'
,
extent
=
[
0
,
ztot
,
-
xtot
/
2
*
1e6
,
xtot
/
2
*
1e6
])
ax
.
set_ylim
(
-
2e6
*
wg_radius
,
2e6
*
wg_radius
)
fig
.
colorbar
(
im
)
ax
.
set_xlabel
(
r
'$z$ (mm)'
)
ax
.
set_ylabel
(
r
'$x$ (nm)'
)
```
%%%% Output: execute_result
Text(0, 0.5, '$x$ (nm)')
%%%% Output: display_data

%% Cell type:code id: tags:
```
python
fresnel
propagator
=
propagate
.
MultislicePropagator
(
u0
,
(
dz
,
dx
,))
multislice
propagator
=
propagate
.
MultislicePropagator
(
u0
,
(
dz
,
dx
,))
```
%% Cell type:code id: tags:
```
python
field
=
np
.
zeros
((
nz
,
nx
),
dtype
=
np
.
complex128
)
field
[
0
,...]
=
u0
for
iz
in
range
(
1
,
nz
):
field
[
iz
,
...]
=
fresnelpropagator
.
step
(
refractive_index
)
```
%% Cell type:code id: tags:
```
python
result
=
field
.
transpose
()
fig
,
ax
=
plt
.
subplots
()
im
=
ax
.
imshow
(
np
.
abs
(
result
[:,:])
**
2
,
aspect
=
'auto'
,
clim
=
(
0
,
3
),
cmap
=
'cubehelix'
,
extent
=
[
0
,
ztot
,
-
xtot
/
2
*
1e6
,
xtot
/
2
*
1e6
])
ax
.
set_ylim
(
-
2e6
*
wg_radius
,
2e6
*
wg_radius
)
fig
.
colorbar
(
im
)
ax
.
set_xlabel
(
r
'$z$ (mm)'
)
ax
.
set_ylabel
(
r
'$x$ (nm)'
)
```
%%%% Output: execute_result
Text(0, 0.5, '$x$ (nm)')
%%%% Output: display_data

%% Cell type:code id: tags:
```
python
```
...
...
examples/Test3d.ipynb
View file @
bc06658c
%% Cell type:code id: tags:
```
python
import
numpy
as
np
import
xraylib
as
xrl
import
matplotlib.pyplot
as
plt
import
fresnel.propagate
as
propagate
```
%% Cell type:code id: tags:
```
python
%
matplotlib
inline
```
%% Cell type:code id: tags:
```
python
energy
=
12.
# keV
# geometry
wavelength
=
1.2398
/
(
energy
*
1e3
)
*
1e-3
# mm
nx
=
1024
ny
=
512
nz
=
800
ztot
=
0.4
# mm
wg_radius
=
25e-6
xtot
=
10
*
wg_radius
# mm
ytot
=
10
*
wg_radius
# units
dx
=
xtot
/
nx
/
wavelength
dy
=
ytot
/
ny
/
wavelength
dz
=
ztot
/
nz
/
wavelength
print
(
f
"dx:
{
dx
}
, dy:
{
dy
}
, dz:
{
dz
}
wavelengths"
)
```
%%%% Output: stream
dx: 2.36303234392644, dy: 4.72606468785288, dz: 4839.490240361349 wavelengths
%% Cell type:code id: tags:
```
python
density_Ge
=
xrl
.
ElementDensity
(
xrl
.
SymbolToAtomicNumber
(
'Ge'
))
density_Polyimide
=
1.42
density_Si
=
xrl
.
ElementDensity
(
xrl
.
SymbolToAtomicNumber
(
'Si'
))
n_Ge
=
xrl
.
Refractive_Index
(
'Ge'
,
energy
,
density_Ge
)
n_Si
=
xrl
.
Refractive_Index
(
'Si'
,
energy
,
density_Si
)
n_PI
=
xrl
.
Refractive_Index
(
'Kapton Polyimide Film'
,
energy
,
density_Polyimide
)
print
(
'Ge'
,
n_Ge
-
1
)
print
(
'Si'
,
n_Si
-
1
)
print
(
'PI'
,
n_PI
-
1
)
xx
=
np
.
linspace
(
-
xtot
/
2
,
xtot
/
2
,
nx
).
reshape
([
1
,
-
1
])
yy
=
np
.
linspace
(
-
ytot
/
2
,
ytot
/
2
,
ny
).
reshape
([
-
1
,
1
])
core
=
(
np
.
abs
(
xx
)
<
wg_radius
)
*
(
np
.
abs
(
yy
)
<
wg_radius
)
cladding
=
~
core
refractive_index
=
n_Ge
*
cladding
+
1
*
core
```
%%%% Output: stream
Ge (-6.426292114225518e-06+7.120128111534574e-07j)
Si (-3.3845180545943876e-06+3.810012288290064e-08j)
PI (-2.1023289580313076e-06+2.2059592416020462e-09j)
%% Cell type:code id: tags:
```
python
u0
=
np
.
exp
(
-
(
xx
**
2
+
yy
**
2
)
/
(
2
*
(
2
*
wg_radius
)
**
2
)).
astype
(
np
.
complex128
)
boundary
=
(
0
,
0
,
0
,
0
)
propagator
=
propagate
.
FDPropagator3d
(
refractive_index
,
u0
,
dz
,
dy
,
dx
)
```
%% Cell type:code id: tags:
```
python
field
=
np
.
zeros
((
nz
,
ny
,
nx
),
dtype
=
np
.
complex128
)
field
[
0
,...]
=
u0
for
iz
in
range
(
1
,
nz
):
boundary
=
(
0
,
0
,
0
,
0
)
field
[
iz
,
...]
=
propagator
.
step
(
refractive_index
,
boundary
)
if
iz
%
100
==
0
:
print
(
iz
)
```
%%%% Output: stream
100
200
300
400
500
600
700
%% Cell type:code id: tags:
```
python
result
=
field
[:,
ny
//
2
,
:].
transpose
()
fig
,
ax
=
plt
.
subplots
()
im
=
ax
.
imshow
(
np
.
abs
(
result
)
**
2
,
aspect
=
'auto'
,
clim
=
(
0
,
4
),
cmap
=
'cubehelix'
,
extent
=
[
0
,
ztot
,
-
xtot
/
2
*
1e6
,
xtot
/
2
*
1e6
])
ax
.
set_ylim
(
-
2e6
*
wg_radius
,
2e6
*
wg_radius
)
fig
.
colorbar
(
im
)
ax
.
set_xlabel
(
r
'$z$ (mm)'
)
ax
.
set_ylabel
(
r
'$x$ (nm)'
)
result
=
field
[:,:,
nx
//
2
].
transpose
()
fig
,
ax
=
plt
.
subplots
()
im
=
ax
.
imshow
(
np
.
abs
(
result
)
**
2
,
aspect
=
'auto'
,
clim
=
(
0
,
4
),
cmap
=
'cubehelix'
,
extent
=
[
0
,
ztot
,
-
xtot
/
2
*
1e6
,
xtot
/
2
*
1e6
])
ax
.
set_ylim
(
-
2e6
*
wg_radius
,
2e6
*
wg_radius
)
fig
.
colorbar
(
im
)
ax
.
set_xlabel
(
r
'$z$ (um)'
)
ax
.
set_ylabel
(
r
'$y$ (nm)'
)
```
%%%% Output: execute_result
Text(0, 0.5, '$y$ (nm)')
%%%% Output: display_data

%%%% Output: display_data

%% Cell type:code id: tags:
```
python
fresnel
propagator
=
propagate
.
FresnelPropagator
(
u0
,
(
dz
,
dy
,
dx
))
multislice
propagator
=
propagate
.
FresnelPropagator
(
u0
,
(
dz
,
dy
,
dx
))
```
%% Cell type:code id: tags:
```
python
field
=
np
.
zeros
((
nz
,
ny
,
nx
),
dtype
=
np
.
complex128
)
field
[
0
,...]
=
u0
for
iz
in
range
(
1
,
nz
):
field
[
iz
,
...]
=
fresnel
propagator
.
step
(
refractive_index
)
field
[
iz
,
...]
=
multislice
propagator
.
step
(
refractive_index
)
if
iz
%
100
==
0
:
print
(
iz
)
```
%%%% Output: stream
100
200
300
400
500
600
700
%% Cell type:code id: tags:
```
python
result
=
field
[:,
ny
//
2
,
:].
transpose
()
fig
,
ax
=
plt
.
subplots
()
im
=
ax
.
imshow
(
np
.
abs
(
result
)
**
2
,
aspect
=
'auto'
,
clim
=
(
0
,
4
),
cmap
=
'cubehelix'
,
extent
=
[
0
,
ztot
,
-
xtot
/
2
*
1e6
,
xtot
/
2
*
1e6
])
ax
.
set_ylim
(
-
2e6
*
wg_radius
,
2e6
*
wg_radius
)
fig
.
colorbar
(
im
)
ax
.
set_xlabel
(
r
'$z$ (mm)'
)
ax
.
set_ylabel
(
r
'$x$ (nm)'
)
result
=
field
[:,:,
nx
//
2
].
transpose
()
fig
,
ax
=
plt
.
subplots
()
im
=
ax
.
imshow
(
np
.
abs
(
result
)
**
2
,
aspect
=
'auto'
,
clim
=
(
0
,
4
),
cmap
=
'cubehelix'
,
extent
=
[
0
,
ztot
,
-
xtot
/
2
*
1e6
,
xtot
/
2
*
1e6
])
ax
.
set_ylim
(
-
2e6
*
wg_radius
,
2e6
*
wg_radius
)
fig
.
colorbar
(
im
)
ax
.
set_xlabel
(
r
'$z$ (um)'
)
ax
.
set_ylabel
(
r
'$y$ (nm)'
)
```
%%%% Output: execute_result
Text(0, 0.5, '$y$ (nm)')
%%%% Output: display_data

%%%% Output: display_data
![](