From 41d8f208df2ad0b46cb8d00b8f296d6433974df5 Mon Sep 17 00:00:00 2001 From: Jan Maximilian Michal <j.michal@stud.uni-goettingen.de> Date: Fri, 9 Dec 2016 12:32:00 +0000 Subject: [PATCH] Different latex delimiter --- .gitignore | 3 ++- README.md | 2 +- hallgrim/custom_markdown.py | 3 ++- scripts/nur_sterne_sehen.py | 3 ++- 4 files changed, 7 insertions(+), 4 deletions(-) diff --git a/.gitignore b/.gitignore index 031838c..5b208fa 100644 --- a/.gitignore +++ b/.gitignore @@ -5,4 +5,5 @@ __pycache__/ output/* notes.html -.DS_Store \ No newline at end of file +.DS_Store +*.sublime-workspace diff --git a/README.md b/README.md index 8975f1e..3519269 100644 --- a/README.md +++ b/README.md @@ -41,5 +41,5 @@ data and assumes unknown properties) ### LaTeX Support Hallgrim supports the native latex approach by ILIAS. To typeset a formula just -put it in brackets like this `[[\\suam_{i=1}^n i = \\frac{n(n+1)}{2}]]`. Special +put it in brackets like this `[[\\sum_{i=1}^n i = \\frac{n(n+1)}{2}]]`. Special caretakers (mostly `\`) have to be escaped unless you use raw strings (`r'a raw string'`). diff --git a/hallgrim/custom_markdown.py b/hallgrim/custom_markdown.py index a315559..4af555c 100644 --- a/hallgrim/custom_markdown.py +++ b/hallgrim/custom_markdown.py @@ -40,7 +40,8 @@ def markdown(value): class LaTeXRenderer(Renderer): def latex(self, formula): - return '<span class="latex">{}</span>'.format(formula) + return r'\({}\)'.format(formula) + # alternative return '<span class="latex">{}</span>'.format(formula) def block_code(self, code, lang): if not lang: diff --git a/scripts/nur_sterne_sehen.py b/scripts/nur_sterne_sehen.py index 8f7473e..f9e07c9 100644 --- a/scripts/nur_sterne_sehen.py +++ b/scripts/nur_sterne_sehen.py @@ -30,7 +30,8 @@ choices = """ [ ] [[2^n]] [ ] [[2n+1]]""" -feedback = r""" Die erste Zeile ergibt genau die Ausgabe `1`. In jeder folgenden +feedback = r""" +Die erste Zeile ergibt genau die Ausgabe `1`. In jeder folgenden Zeile wird die Anzahl der Zahlen verdoppelt und um eine weitere Zahl ergänzt. Die Anzahl der Zahlen [[a_n]] im Schritt [[n]] ist daher: [[a_n = 2a_{n-1} + 1]]. -- GitLab