Commit 6b143c37 authored by janlukas.bosse's avatar janlukas.bosse
Browse files

asdf asdf

parent 888e84d6
......@@ -118,113 +118,164 @@
%% Cell type:code id: tags:
``` python
def breit_wigner_pdf(s):
return 1 / ((s - const.M_Z**2)**2 + const.M_Z**2 * const.Gamma_Z**2)
return (const.Gamma_Z * const.M_Z
/ (np.pi * ((s - const.M_Z**2)**2 + const.M_Z**2 * const.Gamma_Z**2)))
```
%% Cell type:code id: tags:
``` python
class uniform_sampler(object):
def __init__(self, domain):
def breit_wigner_sampler():
x = np.random.uniform()
return const.Gamma_Z * const.M_Z * np.tan(np.pi * (x - 0.5)) + const.M_Z**2
```
%% Cell type:code id: tags:
``` python
class UniformSampler(object):
def __init__(self, domain, codomain):
self.domain = domain
self.domain_volume = 1
self.codomain = codomain
for varrange in domain:
self.domain_volume *= varrange[1] - varrange[0]
self.volume = self.domain_volume * (codomain[1] - codomain[0])
def __call__(self):
x = np.random.uniform(size=(len(self.domain)))
for (dim, dom) in enumerate(self.domain):
x[dim] = dom[0] + x[dim] * (dom[1] - dom[0])
return x
y = np.random.uniform(self.codomain[0], self.codomain[1])
return x, y
```
%% Cell type:code id: tags:
``` python
# really only works for the problem in question here. We
# are already over engineering this code a little bit
class BreitWignerSampler(object):
def __init__(self, prefactor):
self.prefactor = prefactor
self.volume = 2
self.codomain = (0, prefactor)
self.domain_volume = 2
def __call__(self):
s = np.random.uniform()
costheta = np.random.uniform(-1,1)
s = const.Gamma_Z * const.M_Z * np.tan(np.pi * (s - 0.5)) + const.M_Z**2
y = (self.prefactor * const.Gamma_Z * const.M_Z
/ (np.pi * ((s - const.M_Z**2)**2 + const.M_Z**2 * const.Gamma_Z**2)))
return np.array([s, costheta]), y
```
%% Cell type:code id: tags:
``` python
class mc_integrator(object):
def __init__(self, func: Callable, domain: List[Tuple], codomain: Tuple,
histograms=False, histbins=20, sampler=None):
class MCIntegrator(object):
def __init__(self, func: Callable, sampler,
histograms: bool =False, histbins=20):
"""A Monte-Carlo integrator.
Arguments:
----------
func : The function, that we want to integrate.
domain : The domain (x-values) of `func`.
codomain : The co-domain (y-values) of `func`. Should be as tight as
possibl for efficient sampling.
histograms : Record histograms of the accepted (x, y)?
histbins : Number of bins in the histograms. Has no effect, if
`histograms=False`
sampler : A sampling function to generate x-samples from. Defaults
to a uniform sampler on `domain` if nothing is passed.
weight_func : The weighting function for importance sampling. Defaults
to `lambda x : 1` if nothing is passed and should be
compatible with `sampler`.
"""
self.func = func
self.codomain = codomain
self.codomain_volume = codomain[1] - codomain[0]
self.sampler = sampler
self.N_acc = 0
self.N_try = 0
self.I = ufloat(0, 0)
if sampler is None:
self.sampler = uniform_sampler(domain)
else:
self.sampler = sampler
self.histograms = []
if histograms:
for (i, varrange) in enumerate(domain):
for (i, varrange) in enumerate(self.sampler.domain):
self.histograms.append(
Histo1D(histbins, varrange[0], varrange[1], name=f"x{i}"))
@classmethod
def uniform(cls, func, domain, codomain, *args, **kwargs):
sampler = UniformSampler(domain, codomain)
return cls(func, sampler, *args, **kwargs)
def __call__(self, N_try):
for _ in range(N_try):
x = self.sampler()
y = np.random.uniform(self.codomain[0], self.codomain[1])
if (f := self.func(x)) > y:
x, y = self.sampler()
if (f := self.func(x)) > y :
self.N_acc += 1
if self.histograms:
for (i, hist) in enumerate(self.histograms):
hist.Fill(x[i], f)
self.N_try += N_try
p_succ = self.N_acc / self.N_try
self.I = ufloat(self.sampler.domain_volume * self.codomain_volume * p_succ,
self.codomain_volume * self.sampler.domain_volume
* np.sqrt(p_succ * (1 - p_succ) / self.N_try)
self.I = ufloat(self.sampler.volume * p_succ,
self.sampler.volume * np.sqrt(p_succ * (1 - p_succ) / self.N_try)
)
self.I += self.sampler.domain_volume * self.codomain[0]
self.I += self.sampler.domain_volume * self.sampler.codomain[0]
return self.I
def __repr__(self):
return str(self.I)
def reset(self):
self.N_acc = self.N_try = 0
self.I = ufloat(0, 0)
def samples(self, N_samples):
return np.array([self.func(self.sampler()) for _ in range(N_samples)])
samples = np.empty(N_samples)
for i in range(N_samples):
x = self.sampler()
samples[i] = self.func(x)
return samples
```
%% Cell type:code id: tags:
``` python
minval = 0
maxval = 30
integrator = hit_miss_integrator(lambda x: eeqq_mel_random_q(const.M_Z**2, x, 0.),
[(-1,1)], (minval, maxval))
integrator = MCIntegrator.uniform(lambda x: eeqq_mel_random_q(const.M_Z**2, x, 0.),
[(-1,1)], (minval, maxval))
```
%% Cell type:code id: tags:
``` python
integrator(10000)
```
%%%% Output: execute_result
18.0965+/-0.07949353683109506
18.174+/-0.2757074036002661
%% Cell type:code id: tags:
``` python
(integrator.I * const.N_q * 2 * np.pi * const.f_conv
/ (64 * np.pi**2 * const.M_Z**2))
```
%%%% Output: execute_result
42135.51640485619+/-185.0911074089822
42315.96580232954+/-641.9514175304241
%% Cell type:markdown id: tags:
## Error estimate
......@@ -259,11 +310,11 @@
ax.set_yscale("log")
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
## Sampling uniformly in $s$
......@@ -277,11 +328,11 @@
def func(x):
mel = eeqq_mel_random_q(x[0], x[1], 0.)
mel /= domain[0][1] - domain[0][0]
return 0.5 * mel / x[0]
integrator = hit_miss_integrator(func, domain, codomain, histograms=True, histbins=50)
integrator = MC_Integrator.uniform(func, domain, codomain, histograms=True, histbins=50)
```
%% Cell type:code id: tags:
``` python
......@@ -294,21 +345,21 @@
mel * const.N_q * 2 * np.pi * const.f_conv / (32 * np.pi**2)
```
%%%% Output: execute_result
10053.525868080165+/-98.19953452848868
9897.747613351825+/-97.51485843377063
%% Cell type:code id: tags:
``` python
integrator.histograms[0].Plot(c="C1", label=r"$p(s)$")
```
%%%% Output: display_data
![]()
![]()
%% Cell type:code id: tags:
``` python
N_trys = np.logspace(1, 4, 100)
......@@ -338,11 +389,11 @@
ax.set_yscale("log")
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
## $s$-Slicing
......@@ -359,11 +410,11 @@
``` python
minval = 0
maxval = 20
for (i, s) in enumerate(s_domain):
integrator = hit_miss_integrator(
integrator = MC_Integrator.uniform(
lambda x : eeqq_mel_random_q(s, x, 0.),
[(-1,1)], (minval, maxval))
mel = integrator(10000)
slices[i] = (mel * const.N_q * 2 * np.pi * const.f_conv
/ (64 * np.pi**2 * s))
......@@ -375,15 +426,15 @@
plt.step(s_domain, unp.nominal_values(slices) / (n_slices * (s_domain[-1]-s_domain[1])))
```
%%%% Output: execute_result
[<matplotlib.lines.Line2D at 0x7fad4ba268e0>]
[<matplotlib.lines.Line2D at 0x7fe924f25a00>]
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
## What happens in Vegas, stays in Vegas
......@@ -405,21 +456,21 @@
result
```
%%%% Output: execute_result
0.00025695(52)
0.00025645(53)
%% Cell type:code id: tags:
``` python
result * const.N_q * 2 * np.pi * const.f_conv / (32 * np.pi**2)
```
%%%% Output: execute_result
9952(20)
9933(20)
%% Cell type:code id: tags:
``` python
print(result.summary())
......@@ -445,19 +496,207 @@
(7005.6900000000005, 9741.69)
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
## Importance sampling
%% Cell type:code id: tags:
``` python
def func(x):
mel = eeqq_mel_random_q(x[0], x[1], 0.)
mel /= domain[0][1] - domain[0][0]
return 0.5 * mel / x[0]
integrator = MCIntegrator(func, sampler=BreitWignerSampler(prefactor=0.0004))
```
%% Cell type:code id: tags:
``` python
mel = integrator(100000)
mel
```
%% Cell type:code id: tags:
``` python
mel * const.N_q * 2 * np.pi * const.f_conv / (32 * np.pi**2)
```
%%%% Output: execute_result
1065913.1882593345+/-28536.71152709918
%% Cell type:code id: tags:
``` python
s = np.linspace((const.M_Z-3*const.Gamma_Z)**2, (const.M_Z+3*const.Gamma_Z)**2, 50)
costheta = np.linspace(-1, 1, 50)
X, Y = np.meshgrid(s, costheta)
f = func([X, Y])
g = func([X, Y]) / (0.0004 * breit_wigner_pdf(X))
h = breit_wigner_pdf(X)
#samples = integrator.samples(100)
```
%% Cell type:code id: tags:
``` python
plt.plot(f[-1,:])
plt.plot(0.0004 * h[-1,:])
```
%%%% Output: execute_result
[<matplotlib.lines.Line2D at 0x7fe922a6ef10>]
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
ims = plt.imshow(g)#, extent=(s[0], s[-1], -1, 1))
plt.colorbar(ims)
plt.ylabel("costheta")
plt.xlabel("s")
```
%%%% Output: execute_result
Text(0.5, 0, 's')
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
samples = integrator.samples(100)
```
%% Cell type:code id: tags:
``` python
samples
```
%%%% Output: execute_result
array([3.51926821e-05, 5.57425668e-05, 8.30004533e-05, 1.16665246e-04,
7.98217398e-05, 6.44316946e-05, 6.23550808e-05, 1.13624911e-04,
3.74021434e-05, 1.52341006e-04, 3.73793755e-05, 7.53121587e-05,
1.35550059e-04, 6.39967240e-05, 3.72306860e-05, 5.40028109e-05,
8.21817522e-05, 4.68047437e-05, 1.83492966e-04, 2.14541117e-04,
1.01887200e-04, 8.97415285e-05, 3.08174679e-05, 7.43260036e-05,
4.30177647e-05, 8.04837682e-05, 9.80177615e-05, 2.78505711e-03,
5.13142498e-05, 1.42101696e-04, 9.15817247e-05, 1.03995403e-04,
1.40048615e-04, 1.28768667e-04, 4.62583018e-05, 1.32527333e-04,
3.73489186e-05, 4.21237201e-05, 1.65497732e-04, 1.64902250e-04,
1.10691335e-04, 8.89356527e-05, 1.24654016e-04, 1.16578772e-04,
3.71840621e-05, 1.15607543e-04, 1.89140253e-04, 3.01888394e-05,
4.94212516e-05, 1.25366418e-04, 9.57432379e-05, 9.54312909e-05,
1.95469721e-04, 1.22247448e-04, 5.20632207e-05, 4.51905204e-05,
7.88528964e-05, 7.70176156e-05, 7.58507317e-05, 8.75674255e-05,
9.41088507e-05, 3.12774099e-05, 1.83379998e-04, 8.56654186e-05,
3.84161650e-05, 1.30458597e-04, 2.27486359e-04, 4.85894973e-05,
1.98808119e-04, 1.19033883e-04, 1.28568775e-04, 9.21207967e-05,
5.85462563e-05, 1.30992605e-04, 4.05686184e-05, 1.50817309e-04,
1.72002730e-04, 6.52427394e-05, 4.29316791e-05, 2.01835536e-04,
8.38265424e-05, 7.60200143e-05, 4.57295914e-05, 6.42872973e-05,
3.67895245e-05, 8.82506938e-05, 1.18321738e-04, 1.14342339e-04,
6.37880993e-05, 9.78021557e-05, 4.79105035e-05, 1.71804375e-04,
1.12293731e-04, 1.30040155e-04, 7.73188488e-05, 1.97402569e-04,
1.30946290e-04, 5.36473911e-05, 1.73703159e-04, 1.36221110e-04])
%% Cell type:code id: tags:
``` python
integrate.quad(breit_wigner_pdf, -10000000., 10000000.)
```
%%%% Output: execute_result
(0.9999854850591524, 1.0614706237397433e-08)
%% Cell type:code id: tags:
``` python
samples = np.array([breit_wigner_sampler() for _ in range(100000)])
```
%% Cell type:code id: tags:
``` python
x = np.linspace(3000, 12500, 1000)
y = breit_wigner_pdf(x)
plt.hist(samples, bins=100, range=(3000,12500), density=True);
plt.plot(x,y);
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
# Leftovers
%% Cell type:code id: tags:
``` python
def func(x):
return np.exp(-x**2 / 2) / np.sqrt(2 * np.pi)
def sampler():
x = np.random.uniform()
return scp.special.erfinv(x)
sampler.domain_volume = 1.
```
%% Cell type:code id: tags:
``` python
minval = 0.000
maxval = 1 / np.sqrt(np.pi)
codomain = (minval, maxval)
integrator = mc_integrator(func, [], codomain, histograms=False, sampler=sampler, weight_func=func)
```
%% Cell type:code id: tags:
``` python
integrate.quad(func, -10, 10)
```
%%%% Output: execute_result
(1.0000000000000002, 8.671029888166837e-10)
%% Cell type:code id: tags:
``` python
integrator(10000)
```
%%%% Output: execute_result
0.5641895835477563+/-0
%% Cell type:code id: tags:
``` python
for (q, integrator) in mel_integrators.items():
samples = integrator.samples(10000)
plt.hist(samples, bins=30, label=q)
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment