Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
nam
ProxPython
Commits
4000a1bf
Commit
4000a1bf
authored
Dec 02, 2019
by
luckypeter.okonun
Browse files
i uploaded tasse_cdrl_in.py
parent
faadd346
Changes
3
Hide whitespace changes
Inline
Side-by-side
TestSuite/tasse_cdr_in.py
0 → 100644
View file @
4000a1bf
new_config
=
{
## We start very general.
##==========================================
## Problem parameters
##==========================================
## What is the name of the data file?
'data_filename'
:
'Goettingen_data_processor'
,
## What type of object are we working with?
## Options are: 'phase', 'real', 'nonnegative', 'complex'
'object'
:
'nonnegative'
,
## What type of constraints do we have?
## Options are: 'support only', 'real and support', 'nonnegative and support',
## 'amplitude only', 'sparse real', 'sparse complex', and 'hybrid'
'constraint'
:
'nonnegative and support'
,
## What type of measurements are we working with?
## Options are: 'single diffraction', 'diversity diffraction',
## 'ptychography', and 'complex'
'experiment'
:
'CDI'
,
## Next we move to things that most of our users will know
## better than we will. Some of these may be overwritten in the
## data processor file which the user will most likely write.
## Are the measurements in the far field or near field?
## Options are: 'far field' or 'near field',
'distance'
:
'far field'
,
'farfield'
:
1
,
## What are the dimensions of the measurements?
'Nx'
:
128
,
'Ny'
:
128
,
'magn'
:
1
,
## What are the noise characteristics (Poisson or Gaussian)?
'noise'
:
False
,
# experimental data...naturally noisy
##==========================================
## Algorithm parameters
##==========================================
## Now set some algorithm parameters that the user should be
## able to control (without too much damage)
## Algorithm:
'method'
:
'CDRl'
,
# used to be 'Projection',
'numruns'
:
1
,
# the only time this parameter will
# be different than 1 is when we are
# benchmarking...not something a normal user
# would be doing.
'keep_log'
:
0
,
## The following are parameters specific to RAAR, HPR, and HAAR that the
## user should be able to set/modify. Surely
## there will be other algorithm specific parameters that a user might
## want to play with. Don't know how best
## to do this. Thinking of a GUI interface, we could hard code all the
## parameters the user might encounter and have the menu options change
## depending on the value of the prbl.method field.
## do different things depending on the chosen algorithm:
'problem_family'
:
'Phase'
,
## maximum number of iterations and tolerances
'MAXIT'
:
2000
,
'TOL'
:
1e-8
,
## relaxaton parameters in RAAR, HPR and HAAR
'lambda_0'
:
1.0
,
# starting relaxation prameter (only used with
# HAAR, HPR and RAAR)
'lambda_max'
:
1.0
,
# maximum relaxation prameter (only used with
# HAAR, RAAR, and HPR)
'lambda_switch'
:
30
,
# iteration at which lambda moves from lambda_0 -> lambda_max
## parameter for the data regularization
## need to discuss how/whether the user should
## put in information about the noise
'data_ball'
:
999826e-30
,
# 'data_ball' : 9998261e-0,
# the above is the percentage of the gap
# between the measured data and the
# initial guess satisfying the
# qualitative constraints. For a number
# very close to one, the gap is not expected
# to improve much. For a number closer to 0
# the gap is expected to improve a lot.
# Ultimately the size of the gap depends
# on the inconsistency of the measurement model
# with the qualitative constraints.
##==========================================
## parameters for plotting and diagnostics
##==========================================
'diagnostic'
:
True
,
# to stop the diagnostics, just comment this field out.
'rotate'
:
False
,
'iterate_monitor'
:
'feasibility_iterate_monitor'
,
'verbose'
:
1
,
# options are 0 or 1
'graphics'
:
1
,
# whether or not to display figures, options are 0 or 1.
# default is 1.
'anim'
:
0
,
# whether or not to disaply ``real time" reconstructions
# options are 0=no, 1=yes, 2=make a movie
# default is 1.
'graphics_display'
:
'Phase_graphics'
,
# unless specified, a default
# plotting subroutine will generate
# the graphics. Otherwise, the user
# can write their own plotting subroutine
##======================================================================
## Technical/software specific parameters
##======================================================================
## Given the parameter values above, the following technical/algorithmic
## parameters are automatically set. The user does not need to know
## about these details, and so probably these parameters should be set in
## a module one level below this one.
}
\ No newline at end of file
TestSuite/tasse_cdrl_in.py
0 → 100644
View file @
4000a1bf
new_config
=
{
## We start very general.
##==========================================
## Problem parameters
##==========================================
## What is the name of the data file?
'data_filename'
:
'Goettingen_data_processor'
,
## What type of object are we working with?
## Options are: 'phase', 'real', 'nonnegative', 'complex'
'object'
:
'nonnegative'
,
## What type of constraints do we have?
## Options are: 'support only', 'real and support', 'nonnegative and support',
## 'amplitude only', 'sparse real', 'sparse complex', and 'hybrid'
'constraint'
:
'nonnegative and support'
,
## What type of measurements are we working with?
## Options are: 'single diffraction', 'diversity diffraction',
## 'ptychography', and 'complex'
'experiment'
:
'CDI'
,
## Next we move to things that most of our users will know
## better than we will. Some of these may be overwritten in the
## data processor file which the user will most likely write.
## Are the measurements in the far field or near field?
## Options are: 'far field' or 'near field',
'distance'
:
'far field'
,
'farfield'
:
1
,
## What are the dimensions of the measurements?
'Nx'
:
128
,
'Ny'
:
128
,
'magn'
:
1
,
## What are the noise characteristics (Poisson or Gaussian)?
'noise'
:
False
,
# experimental data...naturally noisy
##==========================================
## Algorithm parameters
##==========================================
## Now set some algorithm parameters that the user should be
## able to control (without too much damage)
## Algorithm:
'method'
:
'CDRl'
,
# used to be 'Projection',
'numruns'
:
1
,
# the only time this parameter will
# be different than 1 is when we are
# benchmarking...not something a normal user
# would be doing.
'keep_log'
:
0
,
## The following are parameters specific to RAAR, HPR, and HAAR that the
## user should be able to set/modify. Surely
## there will be other algorithm specific parameters that a user might
## want to play with. Don't know how best
## to do this. Thinking of a GUI interface, we could hard code all the
## parameters the user might encounter and have the menu options change
## depending on the value of the prbl.method field.
## do different things depending on the chosen algorithm:
'problem_family'
:
'Phase'
,
## maximum number of iterations and tolerances
'MAXIT'
:
6000
,
'TOL'
:
1e-8
,
## relaxaton parameters in RAAR, HPR and HAAR
'lambda_0'
:
0.9
,
# starting relaxation prameter (only used with
# HAAR, HPR and RAAR)
'lambda_max'
:
0.9
,
# maximum relaxation prameter (only used with
# HAAR, RAAR, and HPR)
'lambda_switch'
:
30
,
# iteration at which lambda moves from lambda_0 -> lambda_max
## parameter for the data regularization
## need to discuss how/whether the user should
## put in information about the noise
'data_ball'
:
999826e-30
,
# 'data_ball' : 9998261e-0,
# the above is the percentage of the gap
# between the measured data and the
# initial guess satisfying the
# qualitative constraints. For a number
# very close to one, the gap is not expected
# to improve much. For a number closer to 0
# the gap is expected to improve a lot.
# Ultimately the size of the gap depends
# on the inconsistency of the measurement model
# with the qualitative constraints.
##==========================================
## parameters for plotting and diagnostics
##==========================================
'diagnostic'
:
True
,
# to stop the diagnostics, just comment this field out.
'rotate'
:
False
,
'iterate_monitor'
:
'feasibility_iterate_monitor'
,
'verbose'
:
1
,
# options are 0 or 1
'graphics'
:
1
,
# whether or not to display figures, options are 0 or 1.
# default is 1.
'anim'
:
0
,
# whether or not to disaply ``real time" reconstructions
# options are 0=no, 1=yes, 2=make a movie
# default is 1.
'graphics_display'
:
'Phase_graphics'
,
# unless specified, a default
# plotting subroutine will generate
# the graphics. Otherwise, the user
# can write their own plotting subroutine
##======================================================================
## Technical/software specific parameters
##======================================================================
## Given the parameter values above, the following technical/algorithmic
## parameters are automatically set. The user does not need to know
## about these details, and so probably these parameters should be set in
## a module one level below this one.
}
\ No newline at end of file
TestSuite/tasse_cp_in.py
0 → 100644
View file @
4000a1bf
new_config
=
{
## We start very general.
##==========================================
## Problem parameters
##==========================================
## What is the name of the data file?
'data_filename'
:
'Goettingen_data_processor'
,
## What type of object are we working with?
## Options are: 'phase', 'real', 'nonnegative', 'complex'
'object'
:
'nonnegative'
,
## What type of constraints do we have?
## Options are: 'support only', 'real and support', 'nonnegative and support',
## 'amplitude only', 'sparse real', 'sparse complex', and 'hybrid'
'constraint'
:
'nonnegative and support'
,
## What type of measurements are we working with?
## Options are: 'single diffraction', 'diversity diffraction',
## 'ptychography', and 'complex'
'experiment'
:
'CDI'
,
## Next we move to things that most of our users will know
## better than we will. Some of these may be overwritten in the
## data processor file which the user will most likely write.
## Are the measurements in the far field or near field?
## Options are: 'far field' or 'near field',
'distance'
:
'far field'
,
'farfield'
:
1
,
## What are the dimensions of the measurements?
'Nx'
:
128
,
'Ny'
:
128
,
'magn'
:
1
,
## What are the noise characteristics (Poisson or Gaussian)?
'noise'
:
False
,
# experimental data...naturally noisy
##==========================================
## Algorithm parameters
##==========================================
## Now set some algorithm parameters that the user should be
## able to control (without too much damage)
## Algorithm:
'method'
:
'CP'
,
# used to be 'Projection',
'numruns'
:
1
,
# the only time this parameter will
# be different than 1 is when we are
# benchmarking...not something a normal user
# would be doing.
'keep_log'
:
1
,
## The following are parameters specific to RAAR, HPR, and HAAR that the
## user should be able to set/modify. Surely
## there will be other algorithm specific parameters that a user might
## want to play with. Don't know how best
## to do this. Thinking of a GUI interface, we could hard code all the
## parameters the user might encounter and have the menu options change
## depending on the value of the prbl.method field.
## do different things depending on the chosen algorithm:
'problem_family'
:
'Phase'
,
## maximum number of iterations and tolerances
'MAXIT'
:
5000
,
'TOL'
:
1e-8
,
## parameter for the data regularization
## need to discuss how/whether the user should
## put in information about the noise
'data_ball'
:
999826e-30
,
# 'data_ball' : 9998261e-0,
# the above is the percentage of the gap
# between the measured data and the
# initial guess satisfying the
# qualitative constraints. For a number
# very close to one, the gap is not expected
# to improve much. For a number closer to 0
# the gap is expected to improve a lot.
# Ultimately the size of the gap depends
# on the inconsistency of the measurement model
# with the qualitative constraints.
##==========================================
## parameters for plotting and diagnostics
##==========================================
'diagnostic'
:
True
,
# to stop the diagnostics, just comment this field out.
'rotate'
:
False
,
'iterate_monitor'
:
'feasibility_iterate_monitor'
,
'verbose'
:
1
,
# options are 0 or 1
'graphics'
:
1
,
# whether or not to display figures, options are 0 or 1.
#: default is 1.
'anim'
:
0
,
# whether or not to disaply ``real time" reconstructions
# options are 0:no, 1:yes, 2: make a movie
# default is 1.
'graphics_display'
:
'Phase_graphics'
,
# unless specified, a default
# plotting subroutine will generate
# the graphics. Otherwise, the user
# can write their own plotting subroutine
##======================================================================
## Technical/software specific parameters
##======================================================================
## Given the parameter values above, the following technical/algorithmic
## parameters are automatically set. The user does not need to know # about these details, and so probably these parameters should be set in
## a module one level below this one.
}
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment