Skip to content
Snippets Groups Projects
utils.py 5.77 KiB
# Copyright © 2023 Apple Inc.

import glob
import json
import logging
from pathlib import Path
from typing import Generator

import mlx.core as mx
import mlx.nn as nn
import models.llama as llama
import models.mixtral as mixtral
import models.phi2 as phi2
import transformers
from huggingface_hub import snapshot_download

# Constants
MODEL_MAPPING = {
    "llama": llama,
    "mistral": llama,  # mistral is compatible with llama
    "phi": phi2,
    "mixtral": mixtral,
}


def _get_classes(config: dict):
    """
    Retrieve the model and model args classes based on the configuration.

    Args:
        config (dict): The model configuration.

    Returns:
        A tuple containing the Model class and the ModelArgs class.
    """
    model_type = config["model_type"]
    if model_type not in MODEL_MAPPING:
        msg = f"Model type {model_type} not supported."
        logging.error(msg)
        raise ValueError(msg)

    arch = MODEL_MAPPING[model_type]
    return arch.Model, arch.ModelArgs


def fetch_from_hub(hf_path: str):
    model_path = snapshot_download(
        repo_id=hf_path,
        allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
    )
    weight_files = glob.glob(f"{model_path}/*.safetensors")
    if len(weight_files) == 0:
        raise FileNotFoundError("No safetensors found in {}".format(model_path))

    weights = {}
    for wf in weight_files:
        weights.update(mx.load(wf).items())

    config = transformers.AutoConfig.from_pretrained(hf_path)
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        hf_path,
    )
    return weights, config.to_dict(), tokenizer


def upload_to_hub(path: str, name: str, hf_path: str):
    import os

    from huggingface_hub import HfApi, ModelCard, logging

    repo_id = f"mlx-community/{name}"

    card = ModelCard.load(hf_path)
    card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
    card.text = f"""
# {name}
This model was converted to MLX format from [`{hf_path}`]().
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
## Use with mlx
```bash
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model {repo_id} --prompt "My name is"
```
"""
    card.save(os.path.join(path, "README.md"))

    logging.set_verbosity_info()

    api = HfApi()
    api.create_repo(repo_id=repo_id, exist_ok=True)
    api.upload_folder(
        folder_path=path,
        repo_id=repo_id,
        repo_type="model",
    )


def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
    max_file_size_bytes = max_file_size_gibibyte << 30
    shards = []
    shard, shard_size = {}, 0
    for k, v in weights.items():
        if shard_size + v.nbytes > max_file_size_bytes:
            shards.append(shard)
            shard, shard_size = {}, 0
        shard[k] = v
        shard_size += v.nbytes
    shards.append(shard)
    return shards


def save_model(save_dir: str, weights, tokenizer, config):
    save_dir = Path(save_dir)
    save_dir.mkdir(parents=True, exist_ok=True)

    shards = make_shards(weights, max_file_size_gibibyte=5)
    shards_count = len(shards)
    shard_file_format = (
        "model-{:05d}-of-{:05d}.safetensors"
        if shards_count > 1
        else "model.safetensors"
    )

    for i, shard in enumerate(shards):
        shard_name = shard_file_format.format(i + 1, shards_count)
        mx.save_safetensors(str(save_dir / shard_name), shard)

    tokenizer.save_pretrained(save_dir)

    with open(save_dir / "config.json", "w") as fid:
        json.dump(config, fid, indent=4)


def load(path_or_hf_repo: str):
    # If the path exists, it will try to load model form it
    # otherwise download and cache from the hf_repo and cache
    model_path = Path(path_or_hf_repo)
    if not model_path.exists():
        model_path = Path(
            snapshot_download(
                repo_id=path_or_hf_repo,
                allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
            )
        )

    with open(model_path / "config.json", "r") as f:
        config = json.loads(f.read())
        quantization = config.get("quantization", None)

    weight_files = glob.glob(str(model_path / "*.safetensors"))
    if len(weight_files) == 0:
        raise FileNotFoundError("No safetensors found in {}".format(model_path))

    weights = {}
    for wf in weight_files:
        weights.update(mx.load(wf).items())

    model_class, model_args_class = _get_classes(config=config)
    model_args = model_args_class.from_dict(config)
    model = model_class(model_args)
    if quantization is not None:
        nn.QuantizedLinear.quantize_module(
            model,
            **quantization,
            linear_class_predicate=lambda m: isinstance(m, nn.Linear)
            and m.weight.shape[0] != 8,
        )

    model.load_weights(list(weights.items()))

    mx.eval(model.parameters())
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
    return model, tokenizer, config


def generate(
    prompt: mx.array, model: nn.Module, temp: float = 0.0
) -> Generator[mx.array, None, None]:
    """
    Generate text based on the given prompt and model.

    Args:
        prompt (mx.array): The input prompt.
        model (nn.Module): The model to use for generation.
        temp (float): The temperature for sampling. If temp is 0, use max sampling.

    Yields:
        mx.array: The generated text.
    """

    def sample(logits: mx.array) -> mx.array:
        return (
            mx.argmax(logits, axis=-1)
            if temp == 0
            else mx.random.categorical(logits * (1 / temp))
        )

    y = prompt
    cache = None
    while True:
        logits, cache = model(y[None], cache=cache)
        logits = logits[:, -1, :]
        y = sample(logits)
        yield y