# Use the image directly; assuming the URLs are already correctly formed in the 'image' column
# Use the image directly; assuming the URLs are already correctly formed in the 'image' column
df['Media']=df['image']
df['Media']=df['image']
# Add a "Group" column with the value "actors" for all rows
# Add a "Group" column with the value "actors" for all rows
df['Group']='actors'
df['Group']='actors'
# fix date columns
# fix date columns
df['Display Date']=df['Display Date'].fillna('')# Ensure no NaNs in Display Date
df['Display Date']=df['Display Date'].fillna('')# Ensure no NaNs in Display Date
df['Headline']=df['Headline'].fillna('')# Ensure no NaNs in Headline
df['Headline']=df['Headline'].fillna('')# Ensure no NaNs in Headline
df['Text']=df['Text'].fillna('')# Ensure no NaNs in Text
df['Text']=df['Text'].fillna('')# Ensure no NaNs in Text
df['Media']=df['Media'].fillna('')# Ensure no NaNs in Media
df['Media']=df['Media'].fillna('')# Ensure no NaNs in Media
# Now select and order the DataFrame according to the TimelineJS template requirements
# Now select and order the DataFrame according to the TimelineJS template requirements
columns="Year Month Day Time End Year End Month End Day End Time Display Date Headline Text Media Media Credit Media Caption Media Thumbnail Type Group Background Link".split("\t")
columns="Year Month Day Time End Year End Month End Day End Time Display Date Headline Text Media Media Credit Media Caption Media Thumbnail Type Group Background Link".split("\t")