Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bayesmeta
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Container Registry
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Christian Roever
bayesmeta
Commits
10241ada
Commit
10241ada
authored
8 years ago
by
Christian Roever
Browse files
Options
Downloads
Patches
Plain Diff
fixed log-axis bug and added "prediction" argument for forestplot() function
parent
e7d829c7
Branches
forestplot
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
DESCRIPTION
+1
-1
1 addition, 1 deletion
DESCRIPTION
R/bayesmeta.R
+54
-71
54 additions, 71 deletions
R/bayesmeta.R
man/bayesmeta-package.Rd
+1
-1
1 addition, 1 deletion
man/bayesmeta-package.Rd
man/forestplot.bayesmeta.Rd
+21
-11
21 additions, 11 deletions
man/forestplot.bayesmeta.Rd
with
77 additions
and
84 deletions
DESCRIPTION
+
1
−
1
View file @
10241ada
...
...
@@ -2,7 +2,7 @@ Package: bayesmeta
Type: Package
Title: Bayesian Random-Effects Meta-Analysis
Version: 1.3
Date: 2016-10-
08
Date: 2016-10-
13
Authors@R: c(person("Christian", "Roever", role=c("aut","cre"),
email="christian.roever@med.uni-goettingen.de"),
person("Tim", "Friede", role="ctb",
...
...
This diff is collapsed.
Click to expand it.
R/bayesmeta.R
+
54
−
71
View file @
10241ada
...
...
@@ -1534,22 +1534,23 @@ forest.bayesmeta <- function(x, xlab="effect size", refline=0, cex=1,...)
forestplot.bayesmeta
<-
function
(
x
,
labeltext
,
exponentiate
=
FALSE
,
prediction
=
TRUE
,
shrinkage
=
TRUE
,
digits
=
2
,
plot
=
TRUE
,
fn.ci_norm
,
col
,
legend
,
boxsize
=
0.25
,
...
)
# forest plot for a "bayesmeta" object
# based on the "forestplot" package's plotting function
#
# ARGUMENTS:
# exponentiate : flag indicating whether to exponentiate table numbers.
# x : a "bayesmeta" object.
# labeltext : you may provide an alternative "labeltext" argument here
# (see also the "forestplot()" help).
# exponentiate : flag indicating whether to exponentiate numbers (figure and table).
# prediction : flag indicating whether to show prediction interval.
# shrinkage : flag indicating whether to show shrinkage estimates.
# digits : number of significant digits to be shown (based on standard deviations).
# labeltext : you may (try to) provide an alternative "labeltext" argument here
# (see also the "forestplot" help).
# plot : flag you can use to suppress actual plotting.
# ... : further arguments passe
s
to the "forestplot" function.
# ... : further arguments passe
d
to the "forestplot" function.
#
# VALUE:
# a list with components
...
...
@@ -1563,25 +1564,31 @@ forestplot.bayesmeta <- function(x, labeltext,
stop
(
"required 'forestplot' package not available!"
)
#stopifnot(require("forestplot"))
stopifnot
(
is.element
(
"bayesmeta"
,
class
(
x
)),
length
(
digits
)
==
1
,
digits
==
round
(
digits
),
digits
>=
0
)
length
(
digits
)
==
1
,
digits
==
round
(
digits
),
digits
>=
0
,
length
(
prediction
)
==
1
,
is.logical
(
prediction
),
length
(
shrinkage
)
==
1
,
is.logical
(
shrinkage
))
# the plotting data--
# the quoted estimates:
q95
<-
qnorm
(
0.975
)
ma.dat
<-
rbind
(
NA
,
cbind
(
"mean"
=
exp
(
x
$
y
),
"lower"
=
exp
(
x
$
y
-
q95
*
x
$
sigma
),
"upper"
=
exp
(
x
$
y
+
q95
*
x
$
sigma
)),
exp
(
x
$
summary
[
c
(
"median"
,
"95% lower"
,
"95% upper"
),
"mu"
]),
exp
(
x
$
summary
[
c
(
"median"
,
"95% lower"
,
"95% upper"
),
"theta"
]))
cbind
(
x
$
y
,
x
$
y
-
q95
*
x
$
sigma
,
x
$
y
+
q95
*
x
$
sigma
),
x
$
summary
[
c
(
"median"
,
"95% lower"
,
"95% upper"
),
"mu"
],
x
$
summary
[
c
(
"median"
,
"95% lower"
,
"95% upper"
),
"theta"
])
colnames
(
ma.dat
)
<-
c
(
"estimate"
,
"lower"
,
"upper"
)
rownames
(
ma.dat
)
<-
c
(
""
,
x
$
label
,
"mean"
,
"prediction"
)
if
(
!
prediction
)
ma.dat
<-
ma.dat
[
-
(
x
$
k
+3
),]
# the shrinkage estimates:
ma.shrink
<-
rbind
(
NA
,
exp
(
t
(
x
$
theta
)[,
c
(
"median"
,
"95% lower"
,
"95% upper"
)]
)
,
t
(
x
$
theta
)[,
c
(
"median"
,
"95% lower"
,
"95% upper"
)],
NA
,
NA
)
colnames
(
ma.shrink
)
<-
c
(
"estimate"
,
"lower"
,
"upper"
)
rownames
(
ma.shrink
)
<-
c
(
""
,
x
$
label
,
"mean"
,
"prediction"
)
# generate data table (if not provided):
if
(
!
prediction
)
ma.shrink
<-
ma.shrink
[
-
(
x
$
k
+3
),]
if
(
exponentiate
)
{
ma.dat
<-
exp
(
ma.dat
)
ma.shrink
<-
exp
(
ma.shrink
)
}
# generate data table (unless provided):
if
(
missing
(
labeltext
))
{
decplaces
<-
function
(
x
,
signifdigits
=
3
)
# number of decimal places (after decimal point)
...
...
@@ -1589,89 +1596,65 @@ forestplot.bayesmeta <- function(x, labeltext,
{
return
(
max
(
c
(
0
,
-
(
floor
(
log10
(
x
))
-
(
signifdigits
-1
)))))
}
# determine numbers of digits based on standard deviations:
if
(
exponentiate
)
{
# determine numbers of digits based on standard deviations:
stdevs
<-
c
(
exp
(
x
$
y
)
*
x
$
sigma
,
exp
(
x
$
summary
[
"median"
,
"mu"
])
*
x
$
summary
[
"sd"
,
"mu"
]
,
exp
(
x
$
summary
[
"median"
,
"theta"
])
*
x
$
summary
[
"sd"
,
"theta"
])
exp
(
x
$
summary
[
"median"
,
"mu"
])
*
x
$
summary
[
"sd"
,
"mu"
]
)
if
(
prediction
)
stdevs
<-
c
(
stdevs
,
exp
(
x
$
summary
[
"median"
,
"theta"
])
*
x
$
summary
[
"sd"
,
"theta"
])
}
else
{
stdevs
<-
c
(
x
$
sigma
,
x
$
summary
[
"sd"
,
"mu"
],
x
$
summary
[
"sd"
,
"theta"
])
stdevs
<-
c
(
x
$
sigma
,
x
$
summary
[
"sd"
,
"mu"
])
if
(
prediction
)
stdevs
<-
c
(
stdevs
,
x
$
summary
[
"sd"
,
"theta"
])
}
stdevs
<-
abs
(
stdevs
[
is.finite
(
stdevs
)
&
(
stdevs
!=
0
)])
formatstring
<-
paste0
(
"%."
,
decplaces
(
stdevs
,
digits
),
"f"
)
if
(
exponentiate
)
{
labeltext
<-
cbind
(
x
$
labels
,
sprintf
(
formatstring
,
exp
(
x
$
y
)),
paste0
(
"["
,
sprintf
(
formatstring
,
exp
(
x
$
y
-
q95
*
x
$
sigma
)),
", "
,
sprintf
(
formatstring
,
exp
(
x
$
y
+
q95
*
x
$
sigma
)),
"]"
))
# add summary rows:
labeltext
<-
rbind
(
labeltext
,
c
(
"mean"
,
sprintf
(
formatstring
,
exp
(
x
$
summary
[
"median"
,
"mu"
])),
paste0
(
"["
,
sprintf
(
formatstring
,
exp
(
x
$
summary
[
"95% lower"
,
"mu"
])),
", "
,
sprintf
(
formatstring
,
exp
(
x
$
summary
[
"95% upper"
,
"mu"
])),
"]"
)),
c
(
"prediction"
,
sprintf
(
formatstring
,
exp
(
x
$
summary
[
"median"
,
"theta"
])),
paste0
(
"["
,
sprintf
(
formatstring
,
exp
(
x
$
summary
[
"95% lower"
,
"theta"
])),
", "
,
sprintf
(
formatstring
,
exp
(
x
$
summary
[
"95% upper"
,
"theta"
])),
"]"
)))
}
else
{
labeltext
<-
cbind
(
x
$
labels
,
sprintf
(
formatstring
,
x
$
y
),
paste0
(
"["
,
sprintf
(
formatstring
,
x
$
y
-
q95
*
x
$
sigma
),
", "
,
sprintf
(
formatstring
,
x
$
y
+
q95
*
x
$
sigma
),
"]"
))
# add summary rows:
labeltext
<-
rbind
(
labeltext
,
c
(
"mean"
,
sprintf
(
formatstring
,
x
$
summary
[
"median"
,
"mu"
]),
paste0
(
"["
,
sprintf
(
formatstring
,
x
$
summary
[
"95% lower"
,
"mu"
]),
", "
,
sprintf
(
formatstring
,
x
$
summary
[
"95% upper"
,
"mu"
]),
"]"
)),
c
(
"prediction"
,
sprintf
(
formatstring
,
x
$
summary
[
"median"
,
"theta"
]),
paste0
(
"["
,
sprintf
(
formatstring
,
x
$
summary
[
"95% lower"
,
"theta"
]),
", "
,
sprintf
(
formatstring
,
x
$
summary
[
"95% upper"
,
"theta"
]),
"]"
)))
# fill data table:
labeltext
<-
matrix
(
NA_character_
,
nrow
=
nrow
(
ma.dat
),
ncol
=
3
)
labeltext
[
1
,]
<-
c
(
"study"
,
"estimate"
,
"95% CI"
)
labeltext
[,
1
]
<-
c
(
"study"
,
x
$
labels
,
"mean"
,
"prediction"
)[
1
:
nrow
(
ma.dat
)]
for
(
i
in
2
:
(
nrow
(
ma.dat
)))
{
labeltext
[
i
,
2
]
<-
sprintf
(
formatstring
,
ma.dat
[
i
,
"estimate"
])
labeltext
[
i
,
3
]
<-
paste0
(
"["
,
sprintf
(
formatstring
,
ma.dat
[
i
,
"lower"
]),
", "
,
sprintf
(
formatstring
,
ma.dat
[
i
,
"upper"
]),
"]"
)
}
# add header row:
labeltext
<-
rbind
(
c
(
"study"
,
"estimate"
,
"95% CI"
),
labeltext
)
}
horizl
<-
list
(
grid
::
gpar
(
col
=
"grey"
),
grid
::
gpar
(
col
=
"grey"
))
names
(
horizl
)
<-
as.character
(
c
(
2
,
x
$
k
+2
))
if
(
shrinkage
)
{
# default settings for estimate and shrinkage estimate plotting style:
if
(
missing
(
legend
))
legend
<-
c
(
"quoted estimate"
,
"shrinkage estimate"
)
if
(
missing
(
col
))
col
<-
forestplot
::
fpColors
(
box
=
c
(
"black"
,
"grey45"
),
lines
=
c
(
"black"
,
"grey45"
),
summary
=
"grey30"
)
col
<-
fpColors
(
box
=
c
(
"black"
,
"grey45"
),
lines
=
c
(
"black"
,
"grey45"
),
summary
=
"grey30"
)
if
(
missing
(
fn.ci_norm
))
fn.ci_norm
<-
c
(
function
(
...
)
{
forestplot
::
fpDrawPointCI
(
pch
=
15
,
...
)},
function
(
...
)
{
forestplot
::
fpDrawPointCI
(
pch
=
18
,
...
)})
fn.ci_norm
<-
c
(
function
(
...
)
{
fpDrawPointCI
(
pch
=
15
,
...
)},
function
(
...
)
{
fpDrawPointCI
(
pch
=
18
,
...
)})
mean.arg
<-
cbind
(
ma.dat
[,
1
],
ma.shrink
[,
1
])
lower.arg
<-
cbind
(
ma.dat
[,
2
],
ma.shrink
[,
2
])
upper.arg
<-
cbind
(
ma.dat
[,
3
],
ma.shrink
[,
3
])
}
else
{
# default settings for estimate plotting style:
if
(
missing
(
col
))
col
<-
forestplot
::
fpColors
(
box
=
"black"
,
lines
=
"black"
,
summary
=
"grey30"
)
col
<-
fpColors
(
box
=
"black"
,
lines
=
"black"
,
summary
=
"grey30"
)
if
(
missing
(
fn.ci_norm
))
fn.ci_norm
<-
function
(
...
)
{
forestplot
::
fpDrawPointCI
(
pch
=
15
,
...
)}
fn.ci_norm
<-
function
(
...
)
{
fpDrawPointCI
(
pch
=
15
,
...
)}
mean.arg
<-
ma.dat
[,
1
]
lower.arg
<-
ma.dat
[,
2
]
upper.arg
<-
ma.dat
[,
3
]
}
fp
<-
NULL
if
(
plot
)
{
fp
<-
forestplot
::
forestplot
(
labeltext
=
labeltext
,
mean
=
mean.arg
,
lower
=
lower.arg
,
upper
=
upper.arg
,
is.summary
=
c
(
TRUE
,
rep
(
FALSE
,
x
$
k
),
TRUE
,
TRUE
),
hrzl_lines
=
horizl
,
fn.ci_norm
=
fn.ci_norm
,
#fn.ci_sum = fpDrawBarCI,
col
=
col
,
boxsize
=
boxsize
,
legend
=
legend
,
...
)
}
if
(
plot
)
fp
<-
forestplot
::
forestplot
(
labeltext
=
labeltext
,
mean
=
mean.arg
,
lower
=
lower.arg
,
upper
=
upper.arg
,
is.summary
=
c
(
TRUE
,
rep
(
FALSE
,
x
$
k
),
TRUE
,
TRUE
),
hrzl_lines
=
horizl
,
fn.ci_norm
=
fn.ci_norm
,
#fn.ci_sum = fpDrawBarCI,
col
=
col
,
boxsize
=
boxsize
,
legend
=
legend
,
...
)
invisible
(
list
(
"data"
=
ma.dat
[
-1
,],
"shrinkage"
=
ma.shrink
[
2
:
(
x
$
k
+1
),],
"labeltext"
=
labeltext
,
...
...
This diff is collapsed.
Click to expand it.
man/bayesmeta-package.Rd
+
1
−
1
View file @
10241ada
...
...
@@ -16,7 +16,7 @@
Package: \tab bayesmeta\cr
Type: \tab Package\cr
Version: \tab 1.3\cr
Date: \tab 2016-10-
08
\cr
Date: \tab 2016-10-
13
\cr
License: \tab GPL (>=2)
}
The main functionality is provided by the \code{\link{bayesmeta}()}
...
...
This diff is collapsed.
Click to expand it.
man/forestplot.bayesmeta.Rd
+
21
−
11
View file @
10241ada
...
...
@@ -11,7 +11,7 @@
}
\usage{
\method{forestplot}{bayesmeta}(x, labeltext, exponentiate=FALSE,
shrinkage=TRUE, digits=2, plot=TRUE,
prediction=TRUE,
shrinkage=TRUE, digits=2, plot=TRUE,
fn.ci_norm, col, legend, boxsize=0.25, ...)
}
\arguments{
...
...
@@ -26,6 +26,10 @@
a logical flag indicating whether to exponentiate numbers (effect
sizes) in the table.
}
\item{prediction}{
a logical flag indicating whether to show the prediction interval
below the mean estimate estimate.
}
\item{shrinkage}{
a logical flag indicating whether to show shrinkage intervals along
with the quoted estimates.
...
...
@@ -48,7 +52,8 @@
resulting estimates (effect estimate and prediction interval,
as well as shrinkage estimates and intervals).
}
\note{This function requires the \pkg{forestplot} package to be installed.
\note{This function is based on the \pkg{forestplot} package's
\dQuote{\code{\link[forestplot]{forestplot}()}} function.
}
\author{
Christian Roever \email{christian.roever@med.uni-goettingen.de}
...
...
@@ -65,14 +70,16 @@
\seealso{
\code{\link{bayesmeta}},
\code{\link[forestplot]{forestplot}},
\code{\link{forest.bayesmeta}}.
\code{\link{forest.bayesmeta}},
\code{\link{plot.bayesmeta}}.
}
\examples{
\dontrun{
# load data:
data("CrinsEtAl2014")
# compute effect sizes (log-ORs):
# compute effect sizes (log-ORs)
# (requires "metafor" package to be installed):
require("metafor")
es.crins <- escalc(measure="OR",
ai=exp.AR.events, n1i=exp.total,
...
...
@@ -89,21 +96,24 @@ require("forestplot")
# default options:
forestplot.bayesmeta(crins.ma)
# exponentiate values shown in table, show vertical line at OR=1:
forestplot.bayesmeta(crins.ma,
zero=1,
expo=TRUE)
# exponentiate values
(
shown in table
and plot)
, show vertical line at OR=1:
forestplot.bayesmeta(crins.ma, expo=TRUE
, zero=1
)
# logarithmic x-axis:
forestplot.bayesmeta(crins.ma, xlog=TRUE)
forestplot.bayesmeta(crins.ma, expo=TRUE, xlog=TRUE)
# omit prediction interval:
forestplot.bayesmeta(crins.ma, predict=FALSE)
# omit shrinkage intervals:
forestplot.bayesmeta(crins.ma,
zero=1,
shrink=FALSE)
forestplot.bayesmeta(crins.ma, shrink=FALSE)
# show more decimal places:
forestplot.bayesmeta(crins.ma,
zero=1,
digits=3)
forestplot.bayesmeta(crins.ma, digits=3)
# change table values:
# (here: add columns for event counts)
fp <- forestplot.bayesmeta(crins.ma,
plot=FALSE, expo=TRU
E)
fp <- forestplot.bayesmeta(crins.ma,
expo=TRUE, plot=FALS
E)
labtext <- fp$labeltext
labtext <- cbind(labtext[,1],
c("treatment",
...
...
@@ -116,7 +126,7 @@ labtext <- cbind(labtext[,1],
labtext[1,4] <- "OR"
print(fp$labeltext) # before
print(labtext) # after
forestplot.bayesmeta(crins.ma, labeltext=labtext, xlog=TRUE)
forestplot.bayesmeta(crins.ma, labeltext=labtext,
expo=TRUE,
xlog=TRUE)
# (see also the "forestplot" help for more arguments that you may change)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment