Skip to content
Snippets Groups Projects
Commit 2ec4875d authored by Christian Roever's avatar Christian Roever
Browse files

extended documentation

parent b923109b
No related branches found
No related tags found
No related merge requests found
...@@ -2,7 +2,7 @@ Package: bayesmeta ...@@ -2,7 +2,7 @@ Package: bayesmeta
Type: Package Type: Package
Title: Bayesian Random-Effects Meta-Analysis and Meta-Regression Title: Bayesian Random-Effects Meta-Analysis and Meta-Regression
Version: 2.65 Version: 2.65
Date: 2021-03-08 Date: 2021-03-09
Authors@R: c(person(given="Christian", family="Roever", role=c("aut","cre"), Authors@R: c(person(given="Christian", family="Roever", role=c("aut","cre"),
email="christian.roever@med.uni-goettingen.de", email="christian.roever@med.uni-goettingen.de",
comment=c(ORCID="0000-0002-6911-698X")), comment=c(ORCID="0000-0002-6911-698X")),
......
...@@ -29,7 +29,7 @@ ...@@ -29,7 +29,7 @@
pregnancy. Of particular interest were occurrences of pregnancy. Of particular interest were occurrences of
\emph{preeclampsia (PE)} and \emph{fetal growth restriction (FGR)}. A \emph{preeclampsia (PE)} and \emph{fetal growth restriction (FGR)}. A
total of 45 relevant randomized controlled trials (RCTs) were found, total of 45 relevant randomized controlled trials (RCTs) were found,
out of which 40 reported on PE, and 30 reported on FGR. Besides event out of which 40 reported on PE, and 35 reported on FGR. Besides event
rates, the mode of administration (treatment onset (early vs. late) rates, the mode of administration (treatment onset (early vs. late)
and dose (in mg)) was also recorded for each study. and dose (in mg)) was also recorded for each study.
} }
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
Package: \tab bayesmeta\cr Package: \tab bayesmeta\cr
Type: \tab Package\cr Type: \tab Package\cr
Version: \tab 2.65\cr Version: \tab 2.65\cr
Date: \tab 2021-03-08\cr Date: \tab 2021-03-09\cr
License: \tab GPL (>=2) License: \tab GPL (>=2)
} }
The main functionality is provided by the \code{\link{bayesmeta}()} The main functionality is provided by the \code{\link{bayesmeta}()}
......
...@@ -185,6 +185,30 @@ ...@@ -185,6 +185,30 @@
\sQuote{\code{\link{bayesmeta}()}} function's help. \sQuote{\code{\link{bayesmeta}()}} function's help.
} }
\subsection{Accessing posterior density functions, etc.}{
Within the \code{\link{bayesmeta}()} function, access to posterior
density, cumulative distribution function, quantile functtion,
random number generation and posterior inverval computation is
implemented via the \code{$dposterior()}, \code{$dposterior()},
\code{$pposterior()}, \code{$qposterior()}, \code{$rposterior()}
and \code{$post.interval()} functions that are accessible as elements
in the returned \code{list} object. Prediction and shrinkage
estimation are available by setting additional arguments in the
above functions.
In the meta-regression context things get slightly more complicated,
as the \eqn{\beta} parameter may be of higher dimension. Hence, in the
\code{bmr()} function, the three different types of distributions
related to \emph{posterior distribution}, \emph{prediction} and
\emph{shrinkage} are split up into three groups of
functions. For example, the posterior density is accessible via the
\code{$dposterior()} function, the predictive distribution via the
\code{$dpredict()} function, and the shrinkage estimates via the
\code{$dshrink()} function. Analogous functions are returned for
cumulative distribution, quantile function, etc.; see also the
\sQuote{Value} section below.
}
\subsection{Computation}{ \subsection{Computation}{
The \code{bmr()} function utilizes the same computational method The \code{bmr()} function utilizes the same computational method
as the \code{\link{bayesmeta}()} function to derive the posterior as the \code{\link{bayesmeta}()} function to derive the posterior
...@@ -238,7 +262,7 @@ ...@@ -238,7 +262,7 @@
(depending on which parameter(s) is/are provided), or cumulative (depending on which parameter(s) is/are provided), or cumulative
distribution function, quantile function, random numbers or posterior intervals.} distribution function, quantile function, random numbers or posterior intervals.}
\item{dpredict, ppredict, qpredict, rpredict, pred.interval}{functions \item{dpredict, ppredict, qpredict, rpredict, pred.interval}{functions
of \eqn{\tau} and/or \eqn{\beta}) density, cumulative distribution of \eqn{\tau} and/or \eqn{\beta} returning density, cumulative distribution
function, quantiles, random numbers, or intervals for the function, quantiles, random numbers, or intervals for the
\emph{predictive distribution}. This requires specification of \eqn{x} \emph{predictive distribution}. This requires specification of \eqn{x}
values to indicate what covariable values to consider. Use of values to indicate what covariable values to consider. Use of
...@@ -247,7 +271,7 @@ ...@@ -247,7 +271,7 @@
\code{FALSE} yields \emph{predictions} (\eqn{\theta} values).} \code{FALSE} yields \emph{predictions} (\eqn{\theta} values).}
\item{dshrink, pshrink, qshrink, rshrink, shrink.interval}{functions \item{dshrink, pshrink, qshrink, rshrink, shrink.interval}{functions
of \eqn{\theta} yielding density, cumulative distribution, quantiles, of \eqn{\theta} yielding density, cumulative distribution, quantiles,
random numbers or posterior intervalsfor the \emph{shrinkage random numbers or posterior intervals for the \emph{shrinkage
estimates} of the individual \eqn{\theta_i}{theta[i]} parameters estimates} of the individual \eqn{\theta_i}{theta[i]} parameters
corresponding to the supplied \eqn{y_i}{y[i]} data values corresponding to the supplied \eqn{y_i}{y[i]} data values
(\eqn{i=1,\ldots,k}{i=1,...,k}). May be identified using the (\eqn{i=1,\ldots,k}{i=1,...,k}). May be identified using the
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment