Skip to content
Snippets Groups Projects
Commit 4b0b7b0e authored by Christian Roever's avatar Christian Roever
Browse files

extended 'SchmidliEtAl2017' example

parent 479fbd79
No related branches found
No related tags found
No related merge requests found
......@@ -9,7 +9,7 @@
# specify data (Table 2):
SchmidliEtAl2017 <- cbind.data.frame("study" = c("CATT", "CLEAR-IT 2", "HARBOR",
"IVAN", "VIEW 1", "VIEW 2"),
"N" = c(599, 62, 550, 309, 909, 906),
"N" = as.integer(c(599, 62, 550, 309, 909, 906)),
"stdev" = c(12.11, 10.97, 10.94, 9.41, 10.97, 10.95),
"df" = c(597, 60, 548, 307, 906, 903),
"df" = as.integer(c(597, 60, 548, 307, 906, 903)),
stringsAsFactors=FALSE)
......@@ -7,9 +7,9 @@
\format{The data frame contains the following columns:
\tabular{lll}{
\bold{study} \tab \code{character} \tab study label \cr
\bold{N} \tab \code{numeric} \tab total sample size \cr
\bold{N} \tab \code{integer} \tab total sample size \cr
\bold{stdev} \tab \code{numeric} \tab standard deviation estimate \cr
\bold{df} \tab \code{numeric} \tab associated degrees of freedom
\bold{df} \tab \code{integer} \tab associated degrees of freedom
}
}
\details{Schmidli \emph{et al.} (2017) investigated the use of
......@@ -28,8 +28,7 @@
may then be modelled on the logarithmic scale, where the estimates and
their associated standard errors are given by
\deqn{y_i=\log(\hat{s}_i) \quad \mbox{and} \quad
\sigma_i=\sqrt{\frac{1}{2\,\nu_i}}}{y[i] = log(s[i]) and sigma[i] =
sqrt(1/(2*nu[i]))}
\sigma_i=\sqrt{\frac{1}{2\,\nu_i}}}{y[i] = log(s[i]) and sigma[i] = sqrt(1/(2*nu[i]))}
The \emph{unit information standard deviation} for a logarithmic
standard deviation then is at approximately
......@@ -100,11 +99,9 @@ exp(bm$summary[c(2,5,6),"theta"])
# prediction (variances):
exp(2 * bm$summary[c(2,5,6),"theta"])
# sample size formula (12) (per arm):
alpha <- 0.025
beta <- 0.20
delta <- 8
10.9^2 * 2*(qnorm(alpha) + qnorm(beta))^2 / delta^2
# compute required sample size (per arm):
power.t.test(n=NULL, delta=8, sd=10.9, power=0.8)
power.t.test(n=NULL, delta=8, sd=14.0, power=0.8)
# check UISD:
uisd(es, indiv=TRUE)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment