Skip to content
Snippets Groups Projects
Commit ab187d96 authored by Christian Roever's avatar Christian Roever
Browse files

documentation and url fixes

parent 2a949f6e
No related branches found
No related tags found
No related merge requests found
...@@ -14,5 +14,5 @@ Depends: forestplot (>= 1.6), metafor (>= 2.0-0), numDeriv (>= 2016.8-1.1) ...@@ -14,5 +14,5 @@ Depends: forestplot (>= 1.6), metafor (>= 2.0-0), numDeriv (>= 2016.8-1.1)
Suggests: compute.es, knitr, rmarkdown, R.rsp Suggests: compute.es, knitr, rmarkdown, R.rsp
Description: A collection of functions allowing to derive the posterior distribution of the two parameters in a random-effects meta-analysis, and providing functionality to evaluate joint and marginal posterior probability distributions, predictive distributions, shrinkage effects, posterior predictive p-values, etc.; For more details, see also Roever C (2020) <doi:10.18637/jss.v093.i06>. Description: A collection of functions allowing to derive the posterior distribution of the two parameters in a random-effects meta-analysis, and providing functionality to evaluate joint and marginal posterior probability distributions, predictive distributions, shrinkage effects, posterior predictive p-values, etc.; For more details, see also Roever C (2020) <doi:10.18637/jss.v093.i06>.
License: GPL (>=2) License: GPL (>=2)
URL: https://gitlab.gwdg.de/croever/bayesmeta, https://ams.med.uni-goettingen.de:3838/bayesmeta/app URL: https://gitlab.gwdg.de/croever/bayesmeta, http://ams.med.uni-goettingen.de:3838/bayesmeta/app
VignetteBuilder: knitr, R.rsp VignetteBuilder: knitr, R.rsp
...@@ -39,7 +39,7 @@ Christian Roever <christian.roever@med.uni-goettingen.de> ...@@ -39,7 +39,7 @@ Christian Roever <christian.roever@med.uni-goettingen.de>
C. Roever. C. Roever.
\emph{The bayesmeta app}. \emph{The bayesmeta app}.
\url{https://ams.med.uni-goettingen.de:3838/bayesmeta/app}, \url{http://ams.med.uni-goettingen.de:3838/bayesmeta/app},
2018. 2018.
} }
\keyword{ models } \keyword{ models }
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
\item{object}{a \code{bayesmeta} object.} \item{object}{a \code{bayesmeta} object.}
\item{uisd}{the \emph{unit infomation standard deviation} \item{uisd}{the \emph{unit infomation standard deviation}
(a single numerical value, \emph{or} a \code{function} of the (a single numerical value, \emph{or} a \code{function} of the
parameter (\eqn{\theta}{theta})).} parameter (\eqn{\mu}{mu})).}
\item{method}{a character string specifying the method to be used for \item{method}{a character string specifying the method to be used for
ESS computation. By default, the expected local-information-ratio ESS computation. By default, the expected local-information-ratio
ESS (\eqn{ESS_{ELIR}}{ESS_ELIR}) is returned.} ESS (\eqn{ESS_{ELIR}}{ESS_ELIR}) is returned.}
...@@ -50,9 +50,9 @@ ...@@ -50,9 +50,9 @@
Specifying the UISD as a constant is often an approximation, Specifying the UISD as a constant is often an approximation,
sometimes it is also possible to specify the UISD as a function of the sometimes it is also possible to specify the UISD as a function of the
parameter (\eqn{\theta}{theta}). For example, in case the outcome in parameter (\eqn{\mu}{mu}). For example, in case the outcome in
the meta-analyses are log-odds, then the UISD varies with the (log-) the meta-analyses are log-odds, then the UISD varies with the (log-)
odds and is given by \eqn{2\,\mathrm{cosh}(\theta/2)}{2*cosh(theta/2)} odds and is given by \eqn{2\,\mathrm{cosh}(\mu/2)}{2*cosh(mu/2)}
(see also the example below). (see also the example below).
The ESS may be computed or approximated in several ways. The ESS may be computed or approximated in several ways.
...@@ -126,7 +126,7 @@ uisdLogOdds <- function(logodds) ...@@ -126,7 +126,7 @@ uisdLogOdds <- function(logodds)
} }
# Note: in the present example, probabilities are # Note: in the present example, probabilities are
# at approximately 0.25, corresponding to odds of 1/3. # at approximately 0.25, corresponding to odds of 1:3.
uisdLogOdds(log(1/3)) uisdLogOdds(log(1/3))
# The UISD value of 2.31 roughly matches the above empirical figure. # The UISD value of 2.31 roughly matches the above empirical figure.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment