Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bayesmeta
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Container registry
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Christian Roever
bayesmeta
Commits
ad905bfd
Commit
ad905bfd
authored
3 years ago
by
Christian Roever
Browse files
Options
Downloads
Patches
Plain Diff
moved (prediction/shrinkage) moments into separate functions
parent
accdeaed
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
DESCRIPTION
+1
-1
1 addition, 1 deletion
DESCRIPTION
R/bmr.R
+143
-70
143 additions, 70 deletions
R/bmr.R
man/bayesmeta-package.Rd
+1
-1
1 addition, 1 deletion
man/bayesmeta-package.Rd
with
145 additions
and
72 deletions
DESCRIPTION
+
1
−
1
View file @
ad905bfd
...
...
@@ -2,7 +2,7 @@ Package: bayesmeta
Type: Package
Title: Bayesian Random-Effects Meta-Analysis and Meta-Regression
Version: 2.65
Date: 2021-0
4-19
Date: 2021-0
8-03
Authors@R: c(person(given="Christian", family="Roever", role=c("aut","cre"),
email="christian.roever@med.uni-goettingen.de",
comment=c(ORCID="0000-0002-6911-698X")),
...
...
This diff is collapsed.
Click to expand it.
R/bmr.R
+
143
−
70
View file @
ad905bfd
...
...
@@ -722,16 +722,17 @@ bmr.default <- function(y, sigma, labels = names(y),
stopifnot
(
!
missing
(
theta
),
is.vector
(
theta
),
is.numeric
(
theta
),
all
(
is.finite
(
theta
)),
!
missing
(
x
),
is.vector
(
x
),
is.numeric
(
x
),
length
(
x
)
==
d
,
all
(
is.finite
(
x
)))
meanvec
<-
as.vector
(
support
$
mean
%*%
x
)
sdvec
<-
rep
(
NA_real_
,
length
(
support
$
weight
))
for
(
i
in
1
:
length
(
support
$
weight
))
sdvec
[
i
]
<-
as.vector
(
t
(
x
)
%*%
support
$
covariance
[
i
,,]
%*%
x
)
if
(
!
mean
)
sdvec
<-
sdvec
+
support
$
tau
^
2
sdvec
<-
sqrt
(
sdvec
)
#meanvec <- as.vector(support$mean %*% x)
#sdvec <- rep(NA_real_, length(support$weight))
#for (i in 1:length(support$weight))
# sdvec[i] <- as.vector(t(x) %*% support$covariance[i,,] %*% x)
#if (!mean) sdvec <- sdvec + support$tau^2
#sdvec <- sqrt(sdvec)
predMom
<-
pred.moments
(
x
=
x
,
mean
=
mean
)
result
<-
rep
(
NA_real_
,
length
(
theta
))
logwts
<-
log
(
support
$
weight
)
for
(
i
in
1
:
length
(
theta
))
result
[
i
]
<-
sum
(
exp
(
logwts
+
dnorm
(
x
=
theta
[
i
],
mean
=
mean
vec
,
sd
=
sdvec
,
log
=
TRUE
)))
result
[
i
]
<-
sum
(
exp
(
logwts
+
dnorm
(
x
=
theta
[
i
],
mean
=
predMom
[,
"
mean
"
]
,
sd
=
predMom
[,
"sd"
]
,
log
=
TRUE
)))
if
(
log
)
result
<-
log
(
result
)
return
(
result
)
}
...
...
@@ -741,16 +742,17 @@ bmr.default <- function(y, sigma, labels = names(y),
stopifnot
(
!
missing
(
theta
),
is.vector
(
theta
),
is.numeric
(
theta
),
all
(
is.finite
(
theta
)),
!
missing
(
x
),
is.vector
(
x
),
is.numeric
(
x
),
length
(
x
)
==
d
,
all
(
is.finite
(
x
)))
meanvec
<-
as.vector
(
support
$
mean
%*%
x
)
sdvec
<-
rep
(
NA_real_
,
length
(
support
$
weight
))
for
(
i
in
1
:
length
(
support
$
weight
))
sdvec
[
i
]
<-
as.vector
(
t
(
x
)
%*%
support
$
covariance
[
i
,,]
%*%
x
)
if
(
!
mean
)
sdvec
<-
sdvec
+
support
$
tau
^
2
sdvec
<-
sqrt
(
sdvec
)
#meanvec <- as.vector(support$mean %*% x)
#sdvec <- rep(NA_real_, length(support$weight))
#for (i in 1:length(support$weight))
# sdvec[i] <- as.vector(t(x) %*% support$covariance[i,,] %*% x)
#if (!mean) sdvec <- sdvec + support$tau^2
#sdvec <- sqrt(sdvec)
predMom
<-
pred.moments
(
x
=
x
,
mean
=
mean
)
result
<-
rep
(
NA_real_
,
length
(
theta
))
logwts
<-
log
(
support
$
weight
)
for
(
i
in
1
:
length
(
theta
))
result
[
i
]
<-
sum
(
exp
(
logwts
+
pnorm
(
q
=
theta
[
i
],
mean
=
mean
vec
,
sd
=
sdvec
,
log.p
=
TRUE
)))
result
[
i
]
<-
sum
(
exp
(
logwts
+
pnorm
(
q
=
theta
[
i
],
mean
=
predMom
[,
"
mean
"
]
,
sd
=
predMom
[,
"sd"
]
,
log.p
=
TRUE
)))
return
(
result
)
}
...
...
@@ -798,19 +800,20 @@ bmr.default <- function(y, sigma, labels = names(y),
is.finite
(
n
),
n
>=
1
,
n
==
round
(
n
),
!
missing
(
x
),
is.vector
(
x
),
is.numeric
(
x
),
length
(
x
)
==
d
,
all
(
is.finite
(
x
)))
meanvec
<-
as.vector
(
support
$
mean
%*%
x
)
sdvec
<-
rep
(
NA_real_
,
length
(
support
$
weight
))
for
(
i
in
1
:
length
(
support
$
weight
))
sdvec
[
i
]
<-
as.vector
(
t
(
x
)
%*%
support
$
covariance
[
i
,,]
%*%
x
)
if
(
!
mean
)
sdvec
<-
sdvec
+
support
$
tau
^
2
sdvec
<-
sqrt
(
sdvec
)
#meanvec <- as.vector(support$mean %*% x)
#sdvec <- rep(NA_real_, length(support$weight))
#for (i in 1:length(support$weight))
# sdvec[i] <- as.vector(t(x) %*% support$covariance[i,,] %*% x)
#if (!mean) sdvec <- sdvec + support$tau^2
#sdvec <- sqrt(sdvec)
predMom
<-
pred.moments
(
x
=
x
,
mean
=
mean
)
result
<-
NULL
# determine numbers of samples from each mixture component:
freq
<-
as.vector
(
stats
::
rmultinom
(
1
,
size
=
n
,
prob
=
support
$
weight
))
# draw actual samples component-wise:
for
(
i
in
1
:
length
(
support
$
weight
))
{
if
(
freq
[
i
]
>
0
)
{
result
<-
c
(
result
,
rnorm
(
freq
[
i
],
mean
=
meanvec
[
i
],
sd
=
sdvec
[
i
]))
result
<-
c
(
result
,
rnorm
(
freq
[
i
],
mean
=
predMom
[
i
,
"mean"
],
sd
=
predMom
[
i
,
"sd"
]))
}
}
# re-shuffle rows:
...
...
@@ -872,25 +875,26 @@ bmr.default <- function(y, sigma, labels = names(y),
stopifnot
(
is.element
(
which
,
labels
))
idx
<-
which
(
which
==
labels
)
}
# compute predictive moments:
meanvec
<-
as.vector
(
support
$
mean
%*%
X
[
idx
,])
sdvec
<-
rep
(
NA_real_
,
length
(
support
$
weight
))
for
(
i
in
1
:
length
(
support
$
weight
))
sdvec
[
i
]
<-
as.vector
(
t
(
X
[
idx
,])
%*%
support
$
covariance
[
i
,,]
%*%
X
[
idx
,])
sdvec
<-
sqrt
(
sdvec
)
# derive shrinkage moments:
# "inverse variance" weights:
ivw1
<-
sigma
[
idx
]
^
-2
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
)
ivw2
<-
support
$
tau
^
-2
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
)
ivw2
[
support
$
tau
==
0
]
<-
1.0
# shrinkage mean:
meanvec
<-
ivw1
*
y
[
idx
]
+
ivw2
*
meanvec
# shrinkage stdev.:
sdvec
<-
sqrt
((
1
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
))
+
(
ivw2
*
sdvec
)
^
2
)
## compute predictive moments:
#meanvec <- as.vector(support$mean %*% X[idx,])
#sdvec <- rep(NA_real_, length(support$weight))
#for (i in 1:length(support$weight))
# sdvec[i] <- as.vector(t(X[idx,]) %*% support$covariance[i,,] %*% X[idx,])
#sdvec <- sqrt(sdvec)
## derive shrinkage moments:
## "inverse variance" weights:
#ivw1 <- sigma[idx]^-2 / (sigma[idx]^-2 + support$tau^-2)
#ivw2 <- support$tau^-2 / (sigma[idx]^-2 + support$tau^-2)
#ivw2[support$tau==0] <- 1.0
## shrinkage mean:
#meanvec <- ivw1*y[idx] + ivw2*meanvec
## shrinkage stdev.:
#sdvec <- sqrt((1 / (sigma[idx]^-2 + support$tau^-2)) + (ivw2*sdvec)^2)
shrinkMom
<-
shrink.moments
(
which
=
which
)
result
<-
rep
(
NA_real_
,
length
(
theta
))
logwts
<-
log
(
support
$
weight
)
for
(
i
in
1
:
length
(
theta
))
result
[
i
]
<-
sum
(
exp
(
logwts
+
dnorm
(
x
=
theta
[
i
],
mean
=
mean
vec
,
sd
=
s
dvec
,
log
=
TRUE
)))
result
[
i
]
<-
sum
(
exp
(
logwts
+
dnorm
(
x
=
theta
[
i
],
mean
=
shrinkMom
[,
"
mean
"
]
,
sd
=
s
hrinkMom
[,
"sd"
]
,
log
=
TRUE
)))
if
(
log
)
result
<-
log
(
result
)
return
(
result
)
}
...
...
@@ -907,25 +911,26 @@ bmr.default <- function(y, sigma, labels = names(y),
stopifnot
(
is.element
(
which
,
labels
))
idx
<-
which
(
which
==
labels
)
}
# compute predictive moments:
meanvec
<-
as.vector
(
support
$
mean
%*%
X
[
idx
,])
sdvec
<-
rep
(
NA_real_
,
length
(
support
$
weight
))
for
(
i
in
1
:
length
(
support
$
weight
))
sdvec
[
i
]
<-
as.vector
(
t
(
X
[
idx
,])
%*%
support
$
covariance
[
i
,,]
%*%
X
[
idx
,])
sdvec
<-
sqrt
(
sdvec
)
# derive shrinkage moments:
# "inverse variance" weights:
ivw1
<-
sigma
[
idx
]
^
-2
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
)
ivw2
<-
support
$
tau
^
-2
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
)
ivw2
[
support
$
tau
==
0
]
<-
1.0
# shrinkage mean:
meanvec
<-
ivw1
*
y
[
idx
]
+
ivw2
*
meanvec
# shrinkage stdev.:
sdvec
<-
sqrt
((
1
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
))
+
(
ivw2
*
sdvec
)
^
2
)
## compute predictive moments:
#meanvec <- as.vector(support$mean %*% X[idx,])
#sdvec <- rep(NA_real_, length(support$weight))
#for (i in 1:length(support$weight))
# sdvec[i] <- as.vector(t(X[idx,]) %*% support$covariance[i,,] %*% X[idx,])
#sdvec <- sqrt(sdvec)
## derive shrinkage moments:
## "inverse variance" weights:
#ivw1 <- sigma[idx]^-2 / (sigma[idx]^-2 + support$tau^-2)
#ivw2 <- support$tau^-2 / (sigma[idx]^-2 + support$tau^-2)
#ivw2[support$tau==0] <- 1.0
## shrinkage mean:
#meanvec <- ivw1*y[idx] + ivw2*meanvec
## shrinkage stdev.:
#sdvec <- sqrt((1 / (sigma[idx]^-2 + support$tau^-2)) + (ivw2*sdvec)^2)
shrinkMom
<-
shrink.moments
(
which
=
which
)
result
<-
rep
(
NA_real_
,
length
(
theta
))
logwts
<-
log
(
support
$
weight
)
for
(
i
in
1
:
length
(
theta
))
result
[
i
]
<-
sum
(
exp
(
logwts
+
pnorm
(
q
=
theta
[
i
],
mean
=
mean
vec
,
sd
=
s
dvec
,
log.p
=
TRUE
)))
result
[
i
]
<-
sum
(
exp
(
logwts
+
pnorm
(
q
=
theta
[
i
],
mean
=
shrinkMom
[,
"
mean
"
]
,
sd
=
s
hrinkMom
[,
"sd"
]
,
log.p
=
TRUE
)))
return
(
result
)
}
...
...
@@ -971,28 +976,29 @@ bmr.default <- function(y, sigma, labels = names(y),
stopifnot
(
is.element
(
which
,
labels
))
idx
<-
which
(
which
==
labels
)
}
# compute predictive moments:
meanvec
<-
as.vector
(
support
$
mean
%*%
X
[
idx
,])
sdvec
<-
rep
(
NA_real_
,
length
(
support
$
weight
))
for
(
i
in
1
:
length
(
support
$
weight
))
sdvec
[
i
]
<-
as.vector
(
t
(
X
[
idx
,])
%*%
support
$
covariance
[
i
,,]
%*%
X
[
idx
,])
sdvec
<-
sqrt
(
sdvec
)
# derive shrinkage moments:
# "inverse variance" weights:
ivw1
<-
sigma
[
idx
]
^
-2
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
)
ivw2
<-
support
$
tau
^
-2
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
)
ivw2
[
support
$
tau
==
0
]
<-
1.0
# shrinkage mean:
meanvec
<-
ivw1
*
y
[
idx
]
+
ivw2
*
meanvec
# shrinkage stdev.:
sdvec
<-
sqrt
((
1
/
(
sigma
[
idx
]
^
-2
+
support
$
tau
^
-2
))
+
(
ivw2
*
sdvec
)
^
2
)
## compute predictive moments:
#meanvec <- as.vector(support$mean %*% X[idx,])
#sdvec <- rep(NA_real_, length(support$weight))
#for (i in 1:length(support$weight))
# sdvec[i] <- as.vector(t(X[idx,]) %*% support$covariance[i,,] %*% X[idx,])
#sdvec <- sqrt(sdvec)
## derive shrinkage moments:
## "inverse variance" weights:
#ivw1 <- sigma[idx]^-2 / (sigma[idx]^-2 + support$tau^-2)
#ivw2 <- support$tau^-2 / (sigma[idx]^-2 + support$tau^-2)
#ivw2[support$tau==0] <- 1.0
## shrinkage mean:
#meanvec <- ivw1*y[idx] + ivw2*meanvec
## shrinkage stdev.:
#sdvec <- sqrt((1 / (sigma[idx]^-2 + support$tau^-2)) + (ivw2*sdvec)^2)
shrinkMom
<-
shrink.moments
(
which
=
which
)
result
<-
NULL
# determine numbers of samples from each mixture component:
freq
<-
as.vector
(
stats
::
rmultinom
(
1
,
size
=
n
,
prob
=
support
$
weight
))
# draw actual samples component-wise:
for
(
i
in
1
:
length
(
support
$
weight
))
{
if
(
freq
[
i
]
>
0
)
{
result
<-
c
(
result
,
rnorm
(
freq
[
i
],
mean
=
meanvec
[
i
],
sd
=
sdvec
[
i
]))
result
<-
c
(
result
,
rnorm
(
freq
[
i
],
mean
=
shrinkMom
[
i
,
"mean"
],
sd
=
shrinkMom
[
i
,
"sd"
]))
}
}
# re-shuffle rows:
...
...
@@ -1117,7 +1123,74 @@ bmr.default <- function(y, sigma, labels = names(y),
betaHat
<-
as.vector
(
Vbeta
%*%
t
(
rbind
(
X
,
Xp
))
%*%
sigmaTauInv
%*%
c
(
y
,
yp
))
return
(
list
(
"mean"
=
betaHat
,
"covariance"
=
Vbeta
))
}
pred.moments
<-
function
(
tau
,
x
,
mean
=
TRUE
)
# posterior predictive moments (mean and std. dev.)
# conditional on given heterogeneity ("tau") values
# and covariable vector "x".
{
stopifnot
(
!
missing
(
x
),
is.vector
(
x
),
is.numeric
(
x
),
length
(
x
)
==
d
,
all
(
is.finite
(
x
)))
if
(
missing
(
tau
))
{
# return moments based on "support" object
tau
<-
support
$
tau
meanMatrix
<-
support
$
mean
covArray
<-
support
$
covariance
}
else
{
# return moments based on supplied "tau" argument
stopifnot
(
is.vector
(
tau
),
all
(
is.finite
(
tau
)),
all
(
tau
>=
0
))
meanMatrix
<-
matrix
(
NA_real_
,
nrow
=
length
(
tau
),
ncol
=
d
,
dimnames
=
list
(
NULL
,
betanames
))
covArray
<-
array
(
NA_real_
,
dim
=
c
(
length
(
tau
),
d
,
d
),
dimnames
=
list
(
NULL
,
betanames
,
betanames
))
for
(
i
in
1
:
length
(
tau
))
{
cm
<-
conditionalmoments
(
tau
=
tau
[
i
])
meanMatrix
[
i
,]
<-
cm
$
mean
covArray
[
i
,,]
<-
cm
$
covariance
}
}
# derive predictive moments:
meanvec
<-
as.vector
(
meanMatrix
%*%
x
)
sdvec
<-
rep
(
NA_real_
,
nrow
(
meanMatrix
))
for
(
i
in
1
:
nrow
(
meanMatrix
))
sdvec
[
i
]
<-
as.vector
(
t
(
x
)
%*%
covArray
[
i
,,]
%*%
x
)
if
(
!
mean
)
sdvec
<-
sdvec
+
tau
^
2
sdvec
<-
sqrt
(
sdvec
)
return
(
cbind
(
"mean"
=
meanvec
,
"sd"
=
sdvec
))
}
shrink.moments
<-
function
(
tau
,
which
)
# shrinkage moments (mean and std. dev.)
# conditional on given heterogeneity ("tau") values.
{
stopifnot
(
!
missing
(
which
),
is.vector
(
which
),
length
(
which
)
==
1
,
(
is.numeric
(
which
)
|
is.character
(
which
)))
# derive (numerical) study identifier "idx":
if
(
is.numeric
(
which
))
{
stopifnot
(
is.element
(
which
,
1
:
k
))
idx
<-
which
}
else
if
(
is.character
(
which
))
{
stopifnot
(
is.element
(
which
,
labels
))
idx
<-
which
(
which
==
labels
)
}
if
(
missing
(
tau
))
{
# return moments based on "support" object
tauVec
<-
support
$
tau
predMom
<-
pred.moments
(
x
=
X
[
idx
,])
}
else
{
# return moments based on supplied "tau" argument
stopifnot
(
is.vector
(
tau
),
all
(
is.finite
(
tau
)),
all
(
tau
>=
0
))
tauVec
<-
tau
predMom
<-
pred.moments
(
tau
=
tau
,
x
=
X
[
idx
,])
}
# derive shrinkage moments;
# "inverse variance" weights:
ivw1
<-
sigma
[
idx
]
^
-2
/
(
sigma
[
idx
]
^
-2
+
tauVec
^
-2
)
ivw2
<-
tauVec
^
-2
/
(
sigma
[
idx
]
^
-2
+
tauVec
^
-2
)
ivw2
[
tauVec
==
0
]
<-
1.0
# shrinkage means:
meanvec
<-
ivw1
*
y
[
idx
]
+
ivw2
*
predMom
[,
"mean"
]
# shrinkage stdevs:
sdvec
<-
sqrt
((
1
/
(
sigma
[
idx
]
^
-2
+
tauVec
^
-2
))
+
(
ivw2
*
predMom
[,
"sd"
])
^
2
)
return
(
cbind
(
"mean"
=
meanvec
,
"sd"
=
sdvec
))
}
discretize
<-
function
(
delta
=
0.01
,
epsilon
=
0.0001
)
{
divergence
<-
function
(
tau1
,
tau2
)
...
...
This diff is collapsed.
Click to expand it.
man/bayesmeta-package.Rd
+
1
−
1
View file @
ad905bfd
...
...
@@ -17,7 +17,7 @@
Package: \tab bayesmeta\cr
Type: \tab Package\cr
Version: \tab 2.65\cr
Date: \tab 2021-0
4-19
\cr
Date: \tab 2021-0
8-03
\cr
License: \tab GPL (>=2)
}
The main functionality is provided by the \code{\link{bayesmeta}()}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment