Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bayesmeta
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Container Registry
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Christian Roever
bayesmeta
Commits
b2444540
Commit
b2444540
authored
3 years ago
by
Christian Roever
Browse files
Options
Downloads
Patches
Plain Diff
added 'forestplot.bmr()' documentation
parent
9754481d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
man/forestplot.bmr.Rd
+170
-0
170 additions, 0 deletions
man/forestplot.bmr.Rd
with
170 additions
and
0 deletions
man/forestplot.bmr.Rd
0 → 100644
+
170
−
0
View file @
b2444540
\name{forestplot.bmr}
\alias{forestplot.bmr}
\title{
Generate a forest plot for a \code{\link{bmr}} object
(based on the \code{forestplot} package's plotting functions).
}
\description{
Generates a forest plot, showing individual estimates along with their
95 percent confidence intervals, shrinkage intervals, resulting effect
estimates and prediction intervals.
}
\usage{
\method{forestplot}{bmr}(x, X.summary, X.prediction,
labeltext, exponentiate=FALSE,
shrinkage=TRUE, heterogeneity=TRUE,
digits=2, decplaces.X, plot=TRUE,
fn.ci_norm, fn.ci_sum, col, legend, boxsize, ...)
}
\arguments{
\item{x}{
a \code{\link{bmr}} object.
}
\item{X.summary}{
a regressor matrix (\eqn{X}) to be used for effect estimates that
are to be shown in the plot. By default, a diagnonal matrix, set to
\code{NULL} in order to suppress showing summary estimates.
}
\item{X.prediction}{
an optional regressor matrix (\eqn{X}) to be used for predictions
that are to be shown in the plot.
}
\item{labeltext}{an (alternative) \dQuote{\code{labeltext}} argument
which is then handed on to the \code{\link[forestplot]{forestplot}()}
function (see the help there). You can use this to change contents
or add columns to the displayed table; see the example below.
}
\item{exponentiate}{
a logical flag indicating whether to exponentiate numbers (effect
sizes) in table and plot.
}
\item{shrinkage}{
a logical flag indicating whether to show shrinkage intervals along
with the quoted estimates.
}
\item{heterogeneity}{
a logical flag indicating whether to quote the heterogeneity estimate
and CI (at the bottom left).
}
\item{digits}{
The number of significant digits to be shown.
This is interpreted relative to the standard errors of all estimates.
}
\item{decplaces.X}{
The number of decimal places to be shown for the regressors.
}
\item{plot}{
a logical flag indicating whether to actually generate a plot.
}
\item{fn.ci_norm, fn.ci_sum, col, legend, boxsize, \ldots}{
other arguments passed on to the
\pkg{forestplot} package's \code{\link[forestplot]{forestplot}}
function (see also the help there).
}
}
\details{
Generates a forest plot illustrating the underlying data and
resulting estimates (effect estimates and/or prediction intervals,
as well as shrinkage estimates and intervals).
For effect estimates and prediction intervals, regressor matrices
(\eqn{x}) need to be supplied via the \sQuote{\code{X.summary}} or
\sQuote{\code{X.prediction}} arguments. Effect estimates are shown as
diamonds, predictions are shown as horizontal bars.
}
\note{This function is based on the \pkg{forestplot} package's
\dQuote{\code{\link[forestplot]{forestplot}()}} function.
}
\author{
Christian Roever \email{christian.roever@med.uni-goettingen.de}
}
\references{
C. Roever.
\href{https://www.doi.org/10.18637/jss.v093.i06}{Bayesian random-effects meta-analysis using the bayesmeta R package}.
\emph{Journal of Statistical Software}, \bold{93}(6):1-51, 2020.
C. Lewis and M. Clarke.
\href{https://doi.org/10.1136/bmj.322.7300.1479}{Forest plots: trying to see the wood and the trees}.
\emph{BMJ}, \bold{322}:1479, 2001.
C. Guddat, U. Grouven, R. Bender and G. Skipka.
\href{https://doi.org/10.1186/2046-4053-1-34}{A note on the
graphical presentation of prediction intervals in random-effects
meta-analyses}. \emph{Systematic Reviews}, \bold{1}(34), 2012.
R.D. Riley, J.P. Higgins and J.J. Deeks.
\href{https://doi.org/10.1136/bmj.d549}{Interpretation of random effects meta-analyses}.
\emph{BMJ}, \bold{342}:d549, 2011.
}
\seealso{
\code{\link{bayesmeta}},
\code{\link[forestplot]{forestplot}},
\code{\link{forestplot.bayesmeta}},
\code{\link{forestplot.escalc}}.
}
\examples{
\dontrun{
# load data:
data("CrinsEtAl2014")
# compute effect measures (log-OR):
crins.es <- escalc(measure="OR",
ai=exp.AR.events, n1i=exp.total,
ci=cont.AR.events, n2i=cont.total,
slab=publication, data=CrinsEtAl2014)
# show data:
crins.es[,c("publication", "IL2RA", "exp.AR.events", "exp.total",
"cont.AR.events", "cont.total", "yi", "vi")]
# specify regressor matrix (binary indicator variables):
X <- cbind("basiliximab"=as.numeric(crins.es$IL2RA=="basiliximab"),
"daclizumab" =as.numeric(crins.es$IL2RA=="daclizumab"))
print(X)
# perform meta-analysis:
bmr01 <- bmr(crins.es, X=X)
# show forest plot:
forestplot(bmr01)
# show forest plot including contrast
# (difference between groups):
forestplot(bmr01,
X.summary=rbind("basiliximab" =c(1, 0),
"daclizumab" =c(0, 1),
"contrast" =c(-1, 1)))
##########################################################
# perform meta-analysis using a different regressor setup:
X <- cbind("basiliximab"=1,
"offset.dac"=as.numeric(crins.es$IL2RA=="daclizumab"))
print(X)
# perform meta-analysis:
bmr02 <- bmr(crins.es, X=X)
# show forest plot:
forestplot(bmr02,
X.summary=rbind("basiliximab" =c(1, 0),
"daclizumab" =c(1, 1),
"contrast" =c(0, 1)))
##########################################################
# continuous regressor and prediction:
help("NicholasEtAl2019")
# load data:
data("NicholasEtAl2019")
# compute effect sizes (logarithic odds) from count data:
es <- escalc(measure="PLO",
xi=patients*(prog.percent/100), ni=patients,
slab=study, data=NicholasEtAl2019)
# set up regressor matrix:
X <- cbind("intercept2000" = 1, "year" = (es$year-2000))
# perform analysis:
bmr03 <- bmr(es, X=X)
# show forest plot including mean estimates for the
# years 1990 and 2018, and a prediction for 2020:
forestplot(bmr03,
X.summary=rbind("mean 1990"=c(1, -10),
"mean 2018"=c(1,18)),
X.predict=rbind("prediction 2020"=c(1,20)),
xlab="log-odds",
txt_gp = fpTxtGp(ticks = gpar(cex=1), xlab = gpar(cex=1)))
}
}
\keyword{ hplot }
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment