Skip to content
Snippets Groups Projects
Commit c2f3578c authored by Christian Roever's avatar Christian Roever
Browse files

updated documentation

parent 09de6265
No related branches found
No related tags found
No related merge requests found
Package: bayesmeta Package: bayesmeta
Type: Package Type: Package
Title: Bayesian Random-Effects Meta-Analysis and Meta-Regression Title: Bayesian Random-Effects Meta-Analysis and Meta-Regression
Version: 2.75 Version: 2.65
Date: 2021-02-24 Date: 2021-02-25
Authors@R: c(person(given="Christian", family="Roever", role=c("aut","cre"), Authors@R: c(person(given="Christian", family="Roever", role=c("aut","cre"),
email="christian.roever@med.uni-goettingen.de", email="christian.roever@med.uni-goettingen.de",
comment=c(ORCID="0000-0002-6911-698X")), comment=c(ORCID="0000-0002-6911-698X")),
......
...@@ -16,8 +16,8 @@ ...@@ -16,8 +16,8 @@
\tabular{ll}{ \tabular{ll}{
Package: \tab bayesmeta\cr Package: \tab bayesmeta\cr
Type: \tab Package\cr Type: \tab Package\cr
Version: \tab 2.75\cr Version: \tab 2.65\cr
Date: \tab 2021-02-24\cr Date: \tab 2021-02-25\cr
License: \tab GPL (>=2) License: \tab GPL (>=2)
} }
The main functionality is provided by the \code{\link{bayesmeta}()} The main functionality is provided by the \code{\link{bayesmeta}()}
......
...@@ -135,12 +135,16 @@ ...@@ -135,12 +135,16 @@
d}) \emph{regressor matrix}, and \eqn{\Sigma} is a (\eqn{k \times k}{k x d}) \emph{regressor matrix}, and \eqn{\Sigma} is a (\eqn{k \times k}{k x
k}) diagonal covariance matrix containing the k}) diagonal covariance matrix containing the
\eqn{\sigma_i^2}{sigma[i]^2} values, while \eqn{\sigma_i^2}{sigma[i]^2} values, while
\eqn{I} is the (\eqn{k \times k}{k x \eqn{I} is the (\eqn{k \times k}{k x k}) identity matrix. The
k}) identity matrix. regressor matrix \eqn{X} plays a crucial role here, as the
\sQuote{\code{X}} argument (with rows corresponding to studies, and
columns corresponding to covariables) is required to specify the exact
regression setup.
Meta-regression allows the consideration of (study-level) covariables Meta-regression allows the consideration of (study-level) covariables
in a meta-analysis. Quite often, these may also be indicator variables in a meta-analysis. Quite often, these may also be indicator variables
(\sQuote{zero/one} variables) simply identifying subgroups of studies. (\sQuote{zero/one} variables) simply identifying subgroups of studies.
See also the examples shown below.
\subsection{Connection to the simple random-effects model}{ \subsection{Connection to the simple random-effects model}{
The meta-regression model is a generalisation of the \sQuote{simple} The meta-regression model is a generalisation of the \sQuote{simple}
...@@ -177,6 +181,17 @@ ...@@ -177,6 +181,17 @@
accuracy of the computations is determined by the \sQuote{\code{delta}} accuracy of the computations is determined by the \sQuote{\code{delta}}
and \sQuote{\code{epsilon}} arguments (Roever and Friede, and \sQuote{\code{epsilon}} arguments (Roever and Friede,
2017). 2017).
A slight difference between the \code{\link{bayesmeta}()} and
\code{bmr()} implementations exists in the determination of the grid
approximation within the \acronym{DIRECT} algorithm. While
\code{bmr()} considers divergences w.r.t. the conditional posterior
distributions \eqn{p(\beta|\tau)}, \code{bayesmeta()} in addition
considers divergences w.r.t. the shrinkage estimates, which in general
leads to a denser binning (as one can see from the numbers of bins
required; see the example below). A denser binning within the
\code{bmr()} function may be achieved by reducing the
\sQuote{\code{delta}} argument.
} }
} }
\value{ \value{
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment