Skip to content
Snippets Groups Projects
Commit f0b0af69 authored by Christian Roever's avatar Christian Roever
Browse files

added Baeten et al. dataset

parent 121e0d09
No related branches found
No related tags found
No related merge requests found
......@@ -2,7 +2,7 @@ Package: bayesmeta
Type: Package
Title: Bayesian Random-Effects Meta-Analysis
Version: 2.6
Date: 2020-07-17
Date: 2020-11-19
Authors@R: c(person(given="Christian", family="Roever", role=c("aut","cre"),
email="christian.roever@med.uni-goettingen.de",
comment=c(ORCID="0000-0002-6911-698X")),
......
#
# B. Neuenschwander, S. Weber, H. Schmidli, A. O'Hagan.
# Predictively consistent prior effective sample sizes.
# Biometrics 76(2):578-587, 2020.
# https://doi.org/10.1111/biom.13252
#
# D. Baeten et al.
# Anti-interleukin-17A monoclonal antibody secukinumab
# in treatment of ankylosing spondylitis: a randomised,
# double-blind, placebo-controlled trial.
# The Lancet 382(9906):1705-1713, 2013.
# https://doi.org/10.1016/S0140-6736(13)61134-4
#
BaetenEtAl2013 <- cbind.data.frame("study" = c("ATLAS", "Canadian AS", "Wyeth", "Calin",
"Davis", "Gorman", "ASSERT", "Braun"),
"year" = c(2005, 2005, 2006, 2003,
2003, 2002, 2005, 2002),
"events" = c( 23, 12, 19, 9, 39, 6, 9, 10),
"total" = c(107, 44, 51, 39, 139, 20, 78, 35),
stringsAsFactors=FALSE)
rownames(BaetenEtAl2013) <- paste0("study_",1:8)
\name{BaetenEtAl2013}
\docType{data}
\alias{BaetenEtAl2013}
\title{Ankylosing spondylitis example data}
\description{Numbers of cases (patients) and events (responders)
in the placebo control groups of eight studies.}
\usage{data("BaetenEtAl2013")}
\format{The data frame contains the following columns:
\tabular{lll}{
\bold{study} \tab \code{character} \tab study label \cr
\bold{year} \tab \code{numeric} \tab publication year \cr
\bold{events} \tab \code{numeric} \tab number of responders \cr
\bold{total} \tab \code{numeric} \tab total number of patients
}
}
\details{A study was conducted in order to investigate a novel treatment
in ankylosing spondylitis (Baeten et al., 2013). The primary endpoint
related to \emph{treatment response}.
In order to formulate an informative prior distribution for the
response rate to be expected in the control group of the new study, a
systematic review of previous studies was consulted (McLeod et al.,
2007), and, after a meta-analysis of the estimated response
probabilities, the predictive distribution for the new study's
response probability was derived. The predictive distribution here
constitutes the \emph{meta-analytic-predictive (MAP) prior}
distribution (Schmidli et al., 2014). The data set contains the
relevant data from the eight \dQuote{historical} studies' placebo
groups.
Note that the original analysis (Baeten et al., 2013) involved a
binomial model, and the resulting posterior predictive distribution
was eventually approximated by a mixture of beta distributions.
}
\source{
D. Baeten et al.
\href{https://doi.org/10.1016/S0140-6736(13)61134-4}{Anti-interleukin-17A
monoclonal antibody secukinumab in treatment of ankylosing
spondylitis: a randomised, double-blind, placebo-controlled trial}.
\emph{The Lancet}, \bold{382}(9906):1705-1713, 2013.
}
\seealso{
\code{\link{uisd}}.
}
\references{
C. McLeod et al.
\href{https://doi.org/10.3310/hta11280}{Anti-interleukin-17A
monoclonal antibody secukinumab in treatment of ankylosing
spondylitis: a randomised, double-blind, placebo-controlled trial}.
\emph{Health Technology Assessment}, \bold{11}(28), 2007.
H. Schmidli, S. Gsteiger, S. Roychoudhury, A. O'Hagan,
D. Spiegelhalter, B. Neuenschwander.
\href{https://doi.org/10.1111/biom.12242}{Robust
meta-analytic-predictive priors in clinical trials with historical
control information}.
\emph{Biometrics}, \bold{70}(4):1023-1032, 2014.
}
\examples{
data("BaetenEtAl2013")
\dontrun{
# compute effect sizes (logarithmic odds) from the count data:
as <- escalc(xi=events, ni=total, slab=study,
measure="PLO", data=BaetenEtAl2013)
# compute the unit information standard deviation (UISD):
uisd(as)
# perform meta-analysis
# (using uniform priors for effect and heterogeneity):
bm <- bayesmeta(as)
# show results (log-odds):
forestplot(bm, xlab="log-odds", zero=NA)
# show results (odds):
forestplot(bm, exponentiate=TRUE, xlab="odds", zero=NA)
# show posterior predictive distribution --
# in terms of log-odds:
bm$summary[,"theta"]
# in terms of odds:
logodds <- bm.odds$summary[c(2,5,6), "theta"]
exp(logodds)
# in terms of probabilities:
(exp(logodds) / (exp(logodds) + 1))
# illustrate MAP prior density:
x <- seq(-3, 1, by=0.01)
plot(x, bm$dposterior(theta=x, predict=TRUE), type="l",
xlab="log-odds (response)", ylab="posterior predictive density")
abline(h=0, v=0, col="grey")
}
}
\keyword{datasets}
......@@ -17,7 +17,7 @@
Package: \tab bayesmeta\cr
Type: \tab Package\cr
Version: \tab 2.6\cr
Date: \tab 2020-07-17\cr
Date: \tab 2020-11-19\cr
License: \tab GPL (>=2)
}
The main functionality is provided by the \code{\link{bayesmeta}()}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment