Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from __future__ import division, print_function, unicode_literals
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 25 16:15:47 2019
@author: freiche
"""
"""
A Python script that uses numpy and pyper with R and the "lme4" library
to compute relations with linear mixed effects models.
Install the "lme4" library with:
R -e "install.packages('lme4', repos='http://cran.r-project.org')"
"""
import difflib
import numpy as np
import pyper
import cran
DEFAULT_BS_ITER = 1000
def classify_treatment_repetition(analysis, id_ctl="co", id_trt="",
id_ctl_res="", id_trt_res=""):
"""Convenience method for assigning treatment and repetition
This method pairs treatments and repetitions in an analysis
using the measurement titles and identifiers given as
keyword arguments.
Parameters
----------
analysis: shapeout.analysis.Analysis
The analysis instance to use. The titles of the individual
measurements will be searched for the `id_*` terms.
id_ctl: str
Identifies a control measurement.
id_ctl_res: str
Identifies a control measurement in the reservoir. Set to
an empty string to disable.
id_trt: str
Identifies the treatment measurement. Set to an empty
string to use all non-control measurements as treatments.
id_trt_res: str
Identifies the treatment measurement in the reservoir.
Must be set if `id_ctl_res` is used.
"""
# sanity checks
if id_ctl == "" and id_trt == "":
raise ValueError("At least `id_ctl` or `id_trt` must be set!")
idlist = []
for mm in analysis:
if mm.config["setup"]["chip region"] == "reservoir":
if id_ctl_res and id_ctl_res in mm.title:
idlist.append(["res ctl", mm])
elif id_trt_res and id_trt_res in mm.title:
idlist.append(["res trt", mm])
elif id_ctl_res == "":
idlist.append(["res ctl", mm])
elif id_trt_res == "":
idlist.append(["res trt", mm])
else:
idlist.append(["none", mm])
else:
if id_ctl and id_ctl in mm.title:
idlist.append(["ctl", mm])
elif id_trt and id_trt in mm.title:
idlist.append(["trt", mm])
elif id_ctl == "":
idlist.append(["ctl", mm])
elif id_trt == "":
idlist.append(["trt", mm])
else:
idlist.append(["none", mm])
# extract and rename treatment
treatment = [tt for (tt, mm) in idlist]
treatment = [tt.replace("res", "Reservoir") for tt in treatment]
treatment = [tt.replace("ctl", "Control") for tt in treatment]
treatment = [tt.replace("trt", "Treatment") for tt in treatment]
treatment = [tt.replace("none", "None") for tt in treatment]
assert len(treatment) == len(analysis)
# identify timeunit via similarity analysis
ctl_str = [mm.title if tt == "ctl" else "" for (tt, mm) in idlist]
ctl_r_str = [mm.title if tt == "res ctl" else "" for (tt, mm) in idlist]
trt_str = [mm.title if tt == "trt" else "" for (tt, mm) in idlist ]
trt_r_str = [mm.title if tt == "res trt" else "" for (tt, mm) in idlist]
matchids = match_similar_strings(ctl_str, trt_str, ctl_r_str, trt_r_str)
timeunit = np.zeros(len(analysis))
for ii, match in enumerate(matchids):
timeunit[match[0]] = ii+1
timeunit[match[1]] = ii+1
if id_ctl_res or id_trt_res:
timeunit[match[2]] = ii+1
timeunit[match[3]] = ii+1
# Set all non-paired treatments to "None"
for ii, tu in enumerate(timeunit):
if tu == 0:
treatment[ii] = "None"
return treatment, timeunit
def match_similar_strings(a, b, c, d):
"""Similarity analysis to identify string-matches in four lists
Given four lists of strings a, b, c, and d. Find the
strings that match best using similarity analysis and return
the matching list IDs with highest similarity first. Empty
strings are ignored.
For instance, the lists
a = ["peter", "hans", "", "golf"]
b = ["gogo", "ham", "freddy", ""]
c = ["red", "gans", "", "hugo"]
d = ["old", "futur", "erst", "ha"]
will return the following match IDs:
[1, 1, 1, 3]
[3, 0, 3, 0]
[0, 2, 0, 2]
which means that these words are similar:
["hans", "ham", "gans", "ha"]
["golf", "gogo", "hugo", "old"]
["peter", "freddy", "red", "erst"]
"""
ratio = lambda x, y: difflib.SequenceMatcher(a=x, b=y).ratio()
n = len(a)
assert len(a) == len(b) == len(c) == len(d)
# build up simliarity matrix
smat = np.zeros((n, n, n, n))
for ii in range(n):
for jj in range(n):
if a[ii] and b[jj]:
ratij = ratio(a[ii], b[jj])
else:
ratij = 0
for kk in range(n):
if a[ii] and c[kk]:
ratik = ratio(a[ii], c[kk])
else:
ratik = 0
for ll in range(n):
if a[ii] and d[ll]:
ratil = ratio(a[ii], d[ll])
else:
ratil = 0
smat[ii, jj, kk, ll] = ratij + ratik + ratil
# match with maxima
matchids = []
for _ in range(n):
if np.max(smat) == 0:
break
ai, aj, ak, al = np.argwhere(smat==smat.max())[0]
matchids.append([ai, aj, ak, al])
smat[ai, :, :, :] = 0
smat[:, aj, :, :] = 0
smat[:, :, ak, :] = 0
smat[:, :, :, al] = 0
return matchids
def diffdef(y, yR, bs_iter=DEFAULT_BS_ITER, rs=117):
"""
Computes bootstrapped median distributions of same size
for two distributions of different size.
Parameters
----------
y: 1d ndarray of length N
Channel data
yR: 1d ndarray of length M
Reservoir data
bs_iter: int
Number of bootstrapping iterations to perform
rs: int
Random state seed for random number generator
Returns
-------
median: nd array of shape (bs_iter, 1)
Boostrap distribution of medians of y
median_r: nd array of shape (bs_iter, 1)
Boostrap distribution of medians of yR
"""
# Convert to arrays
y = np.array(y)
yR = np.array(yR)
# Seed random numbers that are reproducible on different machines
prng_object = np.random.RandomState(rs)
# Initialize median arrays
Median = np.zeros([bs_iter, 1])
MedianR = np.zeros([bs_iter, 1])
# If this loop is still too slow, we could get rid of it and
# do everything with arrays. Depends on whether we will
# eventually run into memory problems with array sizes
# of y*bs_iter and yR*bs_iter.
for q in range(bs_iter):
# Channel data:
# Compute random indices and draw from y
draw_y_idx = prng_object.randint(0, len(y), len(y))
y_resample = y[draw_y_idx]
Median[q, 0] = np.nanmedian(y_resample)
# Reservoir data
# Compute random indices and draw from yR
draw_yR_idx = prng_object.randint(0, len(yR), len(yR))
yR_resample = yR[draw_yR_idx]
MedianR[q, 0] = np.nanmedian(yR_resample)
return [Median, MedianR]
def linmixmod(xs, treatment, timeunit, model='lmm', RCMD=cran.rcmd):
'''
Linear Mixed-Effects Model computation for one fixed effect and one
random effect.
This function uses the R packages "lme4" and "stats".
The response variable is modeled using two linear mixed effect models
(Model and Nullmodel) of the form:
- xs~treatment+(1+treatment|timeunit)
(Random intercept + random slope model)
- xs~(1+treatment|timeunit)
(Nullmodel without the fixed effect "treatment")
Both models are compared in R using "anova" (from the R-package "stats")
which performs a likelihood ratio test to obtain the p-Value for the
significance of the fixed effect (treatment).
Optionally differential deformations are computed which are then used in the
Linear Mixed Model
Parameters
----------
xs: list of multiple 1D ndarrays
Each index of `xs` contains an array of response variables.
(eg. list containing "area_um" data of several measurements)
treatment: list
Each item is a description/identifier for a treatment. The
enumeration matches the index of `xs`.
treatment[i] can be 'Control', 'Treatment', 'Reservoir Control' or
'Reservoir Treatment'. If 'Reservoir ...' is chosen, the algorithm
will perform a bootstrapping algorithm that removes the median from each
Channel measurement. That means for each 'Control' or 'Treatment' has to exist
a 'Reservoir ...' measurement. The resulting Differential deformations
are then used in the Linear Mixed Model.
Values of 'None' are excluded from the analysis.
timeunit: list
Each item is a description/identifier for a time. The
enumeration matches the index of `xs`.
(e.g. list containing integers "1" and "2" according to the day
at which the content in `xs` was measured)
Values of '0' are excluded from the analysis.
model: string
'lmm': A linear mixed model will be applied
'glmm': A generalized linear mixed model will be applied
Returns
-------
(Generalized) Linear Mixed Effects Model Result: dictionary
The dictionary contains:
-Estimate: the average value of cells that had Treatment 1
-Fixed Effect: Change of the estimate value due to the Treatment 2
-Std Error for the Estimate
-Std Error for the Fixed Effect
-p-Value
References
----------
.. [1] R package "lme4":
Bates D, Maechler M, Bolker B and Walker S (2015). lme4: Linear mixed-
effects models using Eigen and S4. R package version 1.1-9,
https://CRAN.R-project.org/package=lme4.
.. [2] R function "anova" from package "stats":
Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S,
Wadsworth & Brooks/Cole
Examples
-------
import numpy as np
import pyper
from nptdms import TdmsFile
import os
xs = [
[100,99,80,120,140,150,100,100,110,111,140,145], #Larger values (Channel1)
[20,10,5,16,14,22,27,26,5,10,11,8,15,17,20,9], #Smaller values (Reservoir1)
[115,110,90,110,145,155,110,120,115,120,120,150,100,90,100], #Larger values (Channel2)
[30,30,15,26,24,32,37,36,15,20,21,18,25,27,30,19], #Smaller values (Reservoir2)
[150,150,130,170,190,250,150,150,160,161,180,195,130,120,125,130,125],
[2,1,5,6,4,2,7,6,5,10,1,8,5,7,2,9,11,8,13],
[155,155,135,175,195,255,155,155,165,165,185, 200,135,125,130,135,140,150,135,140],
[25,15,19,26,44,42,35,20,15,10,11,28,35,10,25,13]]
treatment1 = ['Control', 'Reservoir Control', 'Control', 'Reservoir Control',\
'Treatment', 'Reservoir Treatment','Treatment', 'Reservoir Treatment']
timeunit1 = [1, 1, 2, 2, 1, 1, 2, 2]
#Example 1: linear mixed models on differential deformations
Result_1 = linmixmod(xs=xs,treatment=treatment1,timeunit=timeunit1,model='lmm')
#Result_1:Estimate=93.69375 (i.e. the average Control value is 93.69)
# FixedEffect=43.93 (i.e. The treatment leads to an increase)
# p-Value(Likelihood Ratio Test)=0.0006026 (i.e. the increase is significant)
#Example 2: Ordinary Linear mixed models
#'Reservoir' measurements are now Controls
#'Channel' measurements are Treatments
#This does not use differential deformation in linmixmod()
treatment2 = ['Treatment', 'Control', 'Treatment', 'Control',\
'Treatment', 'Control','Treatment', 'Control']
timeunit2 = [1, 1, 2, 2, 3, 3, 4, 4]
Result_2 = linmixmod(xs=xs,treatment=treatment2,timeunit=timeunit2,model='lmm')
#Result_2:Estimate=17.17 (i.e. the average Control value is 17.17 )
# FixedEffect=120.257 (i.e. The treatment leads to an increase)
# p-Value(Likelihood Ratio Test)=0.00033 (i.e. the deformation
# increases significantly)
#Example 3: Generalized Linear mixed models
treatment3 = ['Treatment', 'Control', 'Treatment', 'Control',\
'Treatment', 'Control','Treatment', 'Control']
timeunit3 = [1, 1, 2, 2, 3, 3, 4, 4]
Result_3 = linmixmod(xs=xs,treatment=treatment3,timeunit=timeunit3,model='glmm')
#Result_3:Estimate=2.71 (i.e. the average Control value is exp(2.71)=15.08)
# FixedEffect=2.19 (i.e. The treatment leads to an increase)
# p-Value(Likelihood Ratio Test)=0.00366 (i.e. the deformation
# increases significantly)
'''
modelfunc = "xs~treatment+(1+treatment|timeunit)"
nullmodelfunc = "xs~(1+treatment|timeunit)"
# Check if all input lists have the same length
if len(xs) != len(treatment) or len(xs) != len(timeunit):
msg = "`treatment` and `timeunit` not defined for all variables!"
raise ValueError(msg)
if len(xs) < 3:
msg = "Linear Mixed Models require repeated measurements. " +\
"Please select more treatment repetitions."
raise ValueError(msg)
# Check that names are valid
for trt in treatment:
if trt not in ["None",
"Control",
"Reservoir Control",
"Treatment",
"Reservoir Treatment"]:
raise ValueError("Unknown treatment: '{}'".format(trt))
# Remove "None"s and "0"s
treatment = np.array(treatment)
timeunit = np.array(timeunit)
xs = np.array(xs)
invalid = np.logical_or(treatment == "None", timeunit == 0)
treatment = list(treatment[~invalid])
timeunit = list(timeunit[~invalid])
xs = [xi for ii, xi in enumerate(xs) if ~invalid[ii]]
# convert to ndarray
xs = [np.array(xi, dtype=float) for xi in xs]
# remove nan/inf values
xs = [xi[~np.logical_or(np.isnan(xi), np.isinf(xi))] for xi in xs]
######################Differential Deformation#############################
# If the user selected 'Control-Reservoir' and/or 'Treatment-Reservoir'
Median_DiffDef = []
TimeUnit, Treatment = [], []
if 'Reservoir Control' in treatment or 'Reservoir Treatment' in treatment:
if model == 'glmm':
Head_string = "GENERALIZED LINEAR MIXED MODEL ON BOOTSTAP-DISTRIBUTIONS: \n" +\
"---Results are in log space (loglink was used)--- \n"
if model == 'lmm':
Head_string = "LINEAR MIXED MODEL ON BOOTSTAP-DISTRIBUTIONS: \n"
# Find the timeunits for Control
where_contr_ch = np.where(np.array(treatment) == 'Control')
timeunit_contr_ch = np.array(timeunit)[where_contr_ch]
# Find the timeunits for Treatment
where_treat_ch = np.where(np.array(treatment) == 'Treatment')
timeunit_treat_ch = np.array(timeunit)[where_treat_ch]
for n in np.unique(timeunit_contr_ch):
where_time = np.where(np.array(timeunit) == n)
xs_n = np.array(xs)[where_time]
treatment_n = np.array(treatment)[where_time]
where_contr_ch = np.where(np.array(treatment_n) == 'Control')
xs_n_contr_ch = xs_n[where_contr_ch]
where_contr_res = np.where(
np.array(treatment_n) == 'Reservoir Control')
xs_n_contr_res = xs_n[where_contr_res]
# check that corresponding Controls are selected
if (len(where_contr_ch[0]) != 1 or
len(where_contr_res[0]) != 1):
msg = "Controls for channel and reservoir must be given" \
+" exactly once (repetition {})!".format(n)
raise ValueError(msg)
# Apply the Bootstraping algorithm to Controls
y = np.array(xs_n_contr_ch)[0]
yR = np.array(xs_n_contr_res)[0]
[Median, MedianR] = diffdef(y, yR)
Median_DiffDef.append(Median - MedianR)
# TimeUnit is a number for the day or the number of the repeat
TimeUnit.extend(np.array(n).repeat(len(Median)))
Treatment.extend(np.array(['Control']).repeat(len(Median)))
for n in np.unique(timeunit_treat_ch):
where_time = np.where(np.array(timeunit) == n)
xs_n = np.array(xs)[where_time]
treatment_n = np.array(treatment)[where_time]
xs_n_contr_res = xs_n[where_contr_res]
where_treat_ch = np.where(np.array(treatment_n) == 'Treatment')
xs_n_treat_ch = xs_n[where_treat_ch]
where_treat_res = np.where(
np.array(treatment_n) == 'Reservoir Treatment')
xs_n_treat_res = xs_n[where_treat_res]
# check that corresponding Treatments are selected
if (len(where_treat_ch[0]) != 1 or
len(where_treat_res[0]) != 1):
msg = "Treatments for channel and reservoir must be given" \
+" exactly once (repetition {})!".format(n)
raise ValueError(msg)
# Apply the Bootstraping algorithm to Treatments
y = np.array(xs_n_treat_ch)[0]
yR = np.array(xs_n_treat_res)[0]
[Median, MedianR] = diffdef(y, yR)
Median_DiffDef.append(Median - MedianR)
# TimeUnit is a number for the day or the number of the repeat
TimeUnit.extend(np.array(n).repeat(len(Median)))
Treatment.extend(np.array(['Treatment']).repeat(len(Median)))
# Concat all elements in the lists
xs = np.concatenate(Median_DiffDef)
xs = np.array(xs).ravel()
treatment = np.array(Treatment)
timeunit = np.array(TimeUnit)
else: # If there is no 'Reservoir Channel' selected don't apply bootstrapping
if model == 'glmm':
Head_string = "GENERALIZED LINEAR MIXED MODEL: \n" +\
"---Results are in log space (loglink was used)--- \n"
if model == 'lmm':
Head_string = "LINEAR MIXED MODEL: \n"
for i in range(len(xs)):
# Expand every unit in treatment and timeunit to the same length as the
# xs[i] they are supposed to describe
# Using the "repeat" function also characters can be handled
treatment[i] = np.array([treatment[i]]).repeat(len(xs[i]), axis=0)
timeunit[i] = np.array([timeunit[i]]).repeat(len(xs[i]), axis=0)
# Concat all elements in the lists
xs = np.concatenate(xs)
treatment = np.concatenate(treatment)
timeunit = np.concatenate(timeunit)
# Open a pyper instance
r1 = pyper.R(RCMD=RCMD)
# try to fix unicode decode errors by forcing english
r1('Sys.setenv(LANG = "en")')
r1.assign("xs", xs)
# Transfer the vectors to R
r1.assign("treatment", treatment)
r1.assign("timeunit", timeunit)
# Create a dataframe which contains all the data
r1("RTDC=data.frame(xs,treatment,timeunit)")
# Load the necessary library for Linear Mixed Models
lme4resp = r1("library(lme4)")#.decode("utf-8")
if lme4resp.count("Error"):
# Tell the user that something went wrong
raise OSError("R installation at {}: {}\n".format(RCMD, lme4resp) +
"""Please install 'lme4' via:
{} -e "install.packages('lme4', repos='http://cran.r-project.org')
""".format(RCMD)
)
# Random intercept and random slope model
if model == 'glmm':
r1("Model = glmer(" + modelfunc + ",RTDC,family=Gamma(link='log'))")
r1("NullModel = glmer(" + nullmodelfunc + ",RTDC,family=Gamma(link='log'))")
if model == 'lmm':
r1("Model = lmer(" + modelfunc + ",RTDC)")
r1("NullModel = lmer(" + nullmodelfunc + ",RTDC)")
r1("Anova = anova(Model,NullModel)")
# Model_string = r1("summary(Model)").decode("utf-8").split("\n", 1)[1]
# Anova_string = r1("Anova").decode("utf-8").split("\n", 1)[1]
# Coef_string = r1("coef(Model)").decode("utf-8").split("\n", 2)[2]
Model_string = r1("summary(Model)").split("\n", 1)[1]
Anova_string = r1("Anova").split("\n", 1)[1]
Coef_string = r1("coef(Model)").split("\n", 2)[2]
# Cleanup output
Coef_string = Coef_string.replace('attr(,"class")\n', '')
Coef_string = Coef_string.replace('[1] "coef.mer"\n', '')
#"anova" from R does a likelihood ratio test which gives a p-Value
p = np.array(r1.get("Anova$Pr[2]"))
# Obtain p-Value using a normal approximation
# Extract coefficients
r1("coefs <- data.frame(coef(summary(Model)))")
r1("coefs$p.normal=2*(1-pnorm(abs(coefs$t.value)))")
# Convert to array, depending on platform or R version, this is a DataFrame
# or a numpy array, so we convert it to an array. Because on Windows the
# result is an array with subarrays of type np.void, we must access the
# elements with Coeffs[0][0] instead of Coeffs[0,0].
Coeffs = np.array(r1.get("coefs"))
# The Average value of treatment 1
Estimate = Coeffs[0][0]
# The Std Error of the average value of treatment 1
StdErrorEstimate = Coeffs[0][1]
# treatment 2 leads to a change of the Estimate by the value "FixedEffect"
FixedEffect = Coeffs[1][0]
StdErrorFixEffect = Coeffs[1][1]
# Before getting effect and error for y, transform back (there happened a log transformation in the glmer)
estim_y = np.exp(Estimate)
#estim_y_error = abs(np.exp(Estimate+StdErrorEstimate)-np.exp(Estimate-StdErrorEstimate))
fixef_y = np.exp(Estimate + FixedEffect) - np.exp(Estimate)
#fixef_y_error = abs(np.exp(Estimate+StdErrorFixEffect)-np.exp(Estimate-StdErrorFixEffect))
full_summary = Head_string + Model_string +\
"\nCOEFFICIENT TABLE:\n" + Coef_string +\
"\nLIKELIHOOD RATIO TEST (MODEL VS. NULLMODEL): \n" +\
Anova_string
if model == "glmm":
full_summary += "\nESTIMATE AND EFFECT TRANSFORMED BACK FROM LOGSPACE" +\
"\nEstimate = \t" + str(estim_y) +\
"\nFixed effect = \t" + str(fixef_y)
results = {"Full Summary": full_summary,
"p-Value (Likelihood Ratio Test)": p,
"Estimate": Estimate,
"Std. Error (Estimate)": StdErrorEstimate,
"Fixed Effect": FixedEffect,
"Std. Error (Fixed Effect)": StdErrorFixEffect}
return results